摘要
以跳跃类昆虫为仿生对象,研制出一种微小型仿蝗虫机器人,可实现微小尺度下无翻转跳跃运动。通过分析蝗虫后胸跳跃足的骨骼肌肉模型,设计了基于斯蒂芬森六杆机构的仿生跳跃足结构;根据运动学优化六杆参数,解决了跳跃足末端轨迹的非线性和能量储存受限的问题;利用蝗虫蓄力时海特勒肿块与肌腱锁死实现能量锁存的工作机制,设计了基于棘轮-棘爪机构的锁能与释放装置,实现了机器人蓄力时能量的持续累积锁定,及起跳时的能量瞬时释放;利用动力学分析解算出机器人起跳阶段冲量矩和速度波动角的变化,从理论上验证了本机器人可实现无翻转跳跃的运动特性。最后,通过物理样机实验验证,表明设定胫节与地面夹角75°时,可实现机器人的无翻转、高爆发跳跃,即保持与起跳时一致的空中姿态且跳跃最大高度可达5倍体高。
A small-scale locust-like robot that can realise the jumping motion without flipping is proposed through taking typical jumping insects as bionic objects.By analysing the skeletal muscle model of the locust hind thoracic leg,a miniature bionic saltatorial leg based on Stephenson’s six-bar mechanism is designed.The six-bar parameters are optimized according to kinematics analysis,and the nonlinear problem of the trajectory as well as the limited energy storage are solved.By imitating the motion mechanism of Heitler’s mass and tendon locking to achieve energy latching in the process of accumulating force,the ratchet-pawl mechanism of the bionic jumping leg is designed to realize the energy lock and conversion mechanism.Dynamics analysis is carried out to find out the influence of the rotation angle of the active link on the trend of the robot's impulse moment and velocity fluctuation angle,revealing the jumping motion mechanism of the small-size jumping robot without flipping motion.The experimental verification of the physical prototype is carried out,which shows that when the robot takes off at a given angle of 75 degrees,the robot can achieve high-efficiency jumping without flipping,which maintains a good attitude in the air and the jumping height can reach 5 times the body height.
作者
许毅
张雨来
斯云昊
李昌
黄强
石青
XU Yi;ZHANG Yulai;SI Yunhao;LI Chang;HUANG Qiang;SHI Qing(School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081;Chongqing Changan Automobile Co.,Ltd,Chongqing 401133)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2023年第9期1-11,共11页
Journal of Mechanical Engineering
基金
国家自然科学基金项目(U2013208)。
关键词
仿蝗虫机器人
仿生跳跃足
能量转换机制
运动稳定性
locust-inspired robot
bionic saltatorial leg
power conversion mechanism
motion stability