摘要
针对惯性导航系统受模型误差和测量异常值误差的影响,姿态解算结果易出现精度差甚至发散的问题,提出了一种基于平方根容积卡尔曼滤波(square-root cubature Kalman filter,SRCKF)w-检测的多传感器姿态融合算法。利用协方差匹配法对SRCKF的新息序列进行自适应调整,经过调整后的新息在迭代过程中会补偿量测噪声方差阵,减小模型误差影响;再利用调整后的新息进行误差探测,提高w-检测的探测精度,并构造观测值替换准则进行误差观测值替换,解决测量异常值误差带来的影响;最后利用SRCKF进行姿态融合,陀螺仪的姿态作为状态方程,经检测替换后的加速度计和磁力计姿态作为量测方程。实验表明,所提算法可以准确估计系统姿态,与传统算法相比解算精度平均可提升62.43%,在不同条件下,算法整体性能均可得到大幅提升,并能快速进行姿态解算,保证解算精度。
In order to solve the problem that the filtering accuracy is poor or even divergent when the inertial navigation system is affected by model errors and measurement outlier errors,a multi-sensor fusion algorithm based on square-root cubature Kalman filter(SRCKF)w-detection is proposed.The square-root cubature Kalman filter innovation sequence is adaptively adjusted by the covariance matching method,and the adjusted innovation will compensate the measurement noise variance matrix and reduce the influence of model error,then use the adjusted innovation to detect the error and improve the w-detection accuracy.And construct the observation value replacement criterion to replace the error observation value,so as to solve the influence of the measurement abnormal value error.Finally,the attitude fusion is carried out by using SRCKF,the attitude of the gyroscope is taken as the state equation,and the attitude of the accelerometer and magnetometer replaced by detection is taken as the measurement equation.The experimental results show that the proposed algorithm can accurately estimate the system attitude,and the average solution accuracy can be improved by 62.43%compared with the traditional algorithm.Under different conditions,the overall performance of the algorithm can be greatly improved,and the attitude can be solved quickly to ensure the solution accuracy.
作者
乔美英
李宛妮
姚文豪
史有强
Qiao Meiying;Li Wanni;Yao Wenhao;Shi Youqiang(School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China;Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment,Jiaozuo 454000,China)
出处
《电子测量与仪器学报》
CSCD
北大核心
2023年第5期127-135,共9页
Journal of Electronic Measurement and Instrumentation
基金
国家自然科学基金(U1404510)
河南省科技攻关项目(222102220076)资助。
关键词
多传感器融合
平方根容积卡尔曼滤波
协方差匹配
新息自适应调整
观测值替换准则
multi-sensor fusion
square-root cubature Kalman filter
covariance matching
adaptive adjustment of innovation
observation replacement criterion