期刊文献+

Generation of color-controllable room-temperature phosphorescence via luminescent center engineering and in-situ immobilization

原文传递
导出
摘要 Materials with controllable luminescence colors are highly desirable for numerous promising applications, however, the preparation of such materials, particularly with color-controllable room-temperature phosphorescence(RTP), remains a formidable challenge. In this work, we reported on a facile strategy to prepare color-controllable RTP materials via the pyrolysis of a mixture containing 1-(2-hydroxyethyl)-urea(H-urea) and boric acid(BA). By controlling the pyrolysis temperatures, the as-prepared materials exhibited ultralong RTP with emission colors ranging from cyan, green, to yellow. Further studies revealed that multiple luminescent centers formed from H-urea, which were in-situ embedded in the B2O3matrix(produced from BA) during the pyrolysis process. The contents of the different luminescent centers could be regulated by the pyrolysis temperatures, resulting in color-tunable RTP. Significantly, the luminescent center engineering and in-situ immobilization strategy not only provided a facile method for conveniently preparing color-controllable RTP materials, but also endowed the materials prepared at relatively lower temperatures with color-changeable RTP features under thermal stimulus. Considering their unique properties, the potential applications of the as-obtained materials for advanced anti-counterfeiting and information encryption were preliminarily demonstrated.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期193-199,共7页 中国化学快报(英文版)
基金 the National Natural Science Foundation of China (Nos. 51872300 and 52003284) the Natural Science Foundation of Jiangsu Province (No. BK20210481) the Fundamental Research Fund of Jiangnan University (No. JUSRP122015) for financially supporting this work。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部