期刊文献+

Dopant-vacancy activated tetragonal transition metal selenide for hydrogen evolution electrocatalysis

原文传递
导出
摘要 Hydrogen production from water electrolysis using renewable electricity is a highly promising route to solve the energy crisis of human society. The tetragonal 3d-transition metal selenide with metallic feature has been discovered to efficiently catalyze the hydrogen evolution electrocatalysis;however, its performance is still unsatisfactory and further improvement is necessary. Herein, the hydrogen evolution reaction of the functional tetragonal 3d-transition metal selenide with the heteroatom-dopant as well as cationic vacancy is fully investigated by means of density functional theory calculations. Our results identify 53 promising candidates endowed with good activity due to the absolute free energy of hydrogen adsorption |ΔGH| ≤ 0.30 eV wherein 15 candidates with |ΔG_H| ≤ 0.09 eV possess compelling performance in comparison with the benchmark Pt material. Interestingly, the functional CuSe systems account for 29out of 53 candidates, being high attractive for experimental synthesis. According to the analysis of electronic structure, the enhanced performance stems from the upshift of the sp orbitals, which benefits for the improved affinity toward hydrogen capture. This work provides new direction and guidance for the design of novel electrocatalysts.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期249-255,共7页 中国化学快报(英文版)
基金 the supports from the National Natural Science Foundation of China (Nos. 21503097, 51631004, 51701152, 21806023, and 51702345) Natural Science Foundation of Shaanxi Province (No. 2018JQ5181)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部