期刊文献+

分数阶反卷积的高分辨力目标亮点提取 被引量:1

Target highlight extraction method based on fractional deconvolution
下载PDF
导出
摘要 提出了一种采用分数阶反卷积的目标亮点提取方法对目标亮点进行高分辨力提取。该方法依据分数阶域卷积公式,引入反卷积理论去除窗函数的影响,实现了时频域去模糊,提升了时频分辨力。仿真和实验数据表明,基于反卷积的短时分数阶傅里叶变换对线性调频信号的频域分辨力高于分数阶傅里叶变换,可提高时频域上检测线性调频信号的性能。从而实现时频域上目标亮点的高分辨力提取,提升目标亮点间时延差的估计精度。与传统方法相比基于分数阶反卷积的目标亮点提取方法具有更高的分辨力,且对混响有一定的抑制作用。 A high resolution target highlight extraction method using fractional deconvolution is proposed to extract target highlights.Based on the fractional order domain convolution formula,deconvolution theory is introduced to remove the influence of window functions in this method.The time-frequency domain deblurring is realized,and the time-frequency resolution is improved.Simulation and experimental data show that the frequency domain resolution of the short time fractional Fourier transform based on deconvolution is higher than that of the fractional Fourier transform for linear frequency modulated signals.It can improve the performance of detecting linear frequency modulated signals in the time and frequency domain,thereby achieving high resolution extraction of target highlights in the time-frequency domain and improving the estimation accuracy of time delay differences between target highlights.Compared with traditional methods,the target highlight extraction method based on fractional deconvolution has higher resolution and certain inhibition effect on reverberation.
作者 王成 朱广平 殷敬伟 唐胜雨 WANG Cheng;ZHU Guangping;YIN Jingwei;TANG Shengyu(National Key Laboratory of Underwater Acoustic Technology,Harbin Engineering University,Harbin 150001;Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University),Ministry of Industry and Information Technology,Harbin 150001;College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001)
出处 《声学学报》 EI CAS CSCD 北大核心 2023年第4期715-723,共9页 Acta Acustica
基金 中央高校基本科研业务费专项资金(XK205002102803)资助。
关键词 目标亮点 时频分辨力 短时分数阶傅里叶变换 反卷积 Target highlight Time-frequency resolution Short-time fractional Fourier transform Deconvolution
  • 相关文献

参考文献11

二级参考文献114

共引文献150

同被引文献36

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部