期刊文献+

面向实时目标检测的Faster R-CNN算法

Faster R-CNN algorithm for real-time target detection
下载PDF
导出
摘要 文章讨论了目标检测在计算机视觉领域中的重要性,并介绍了目标检测算法的2种主要类型:传统计算机视觉方法和基于深度学习的方法。随着深度学习技术的发展,基于深度学习的目标检测算法逐渐成为主流,并取得了较好的效果。然而,为进一步提高FasterR-CNN在目标检测方面的性能,文章结合鲸鱼优化算法对FasterR-CNN网络进行优化,并使用PASCALVOC2012数据集对网络性能进行测试。实验结果表明,基于鲸鱼优化算法的FasterR-CNN网络性能明显优于标准FasterR-CNN网络。基于此,深度学习的目标检测算法将在未来有更广泛的应用和更好的效果。 The article discusses the importance of object detection in the field of computer vision and introduces two main types of object detection algorithms:traditional computer vision methods and deep learning based methods.With the development of deep learning technology,object detection algorithms based on deep learning have gradually become mainstream and achieved good results.However,in order to further improve the performance of Faster R-CNN in object detection,the article combines the Whale Optimization Algorithm to optimize the Faster R-CNN network and tests its performance using the PASCAL VOC 2012 dataset.The experimental results show that the performance of the Faster R-CNN network based on the Whale Optimization Algorithm is significantly better than that of the standard Faster R-CNN network.Based on this,deep learning object detection algorithms will have wider applications and better results in the future.
作者 曹宏徙 CAO Hongxi(Hunan College of Information,Changsha 410203,China)
出处 《计算机应用文摘》 2023年第15期125-127,共3页 Chinese Journal of Computer Application
关键词 FasterR-CNN 目标检测 实时性 Faster R-CNN target detection real-time
  • 相关文献

参考文献3

二级参考文献18

  • 1杨清夙,游志胜,张先玉.基于豪斯多夫距离的快速多人脸检测算法[J].电子科技大学学报,2004,33(4):407-409. 被引量:9
  • 2宋加涛,刘济林,池哲儒,王蔚.人脸正面图像中眼睛的精确定位[J].计算机辅助设计与图形学学报,2005,17(3):540-545. 被引量:13
  • 3罗明刚,李一民,曾素娣.基于Adaboost算法的人脸检测研究[J].计算机与数字工程,2007,35(2):7-8. 被引量:10
  • 4李永杰,谢维夫,尧德中.A Preliminary Study of Automatic Delineation of Eyes on CT Images Using Ant Colony Optimization[J].Journal of Electronic Science and Technology of China,2007,5(1):66-69. 被引量:2
  • 5RIOPKA T P, BOULT T. The eyes have it[C]//Proceeding of the 2003 ACM SIGMM Workshop on Biometrics Methods and Applications. California: ACM Press, 2003: 9-16.
  • 6VIOLA P J M. Robust real-time object detection[R]. Technical Report 2001/01, Compaq CRL, 2001.
  • 7RAINER L, JOCHEN M. An extended set of haar-like features for rapid object detection[J]. IEEE ICIP, 2002, 900-903.
  • 8FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to booosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 11-139.
  • 9LIENHART R, KURANOV A, PISAREVSKY V. Empirical analysis of detection cascades of boosted classifiers for rapid object deteetion[C]//Proceedings of the 25th German Pattern Recognition Symposium, Magdeburg ICIP, 2003: 297-304.
  • 10Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 229-240.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部