期刊文献+

铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻

Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS_(2) nanoribbons with ferromagnetic electrode
下载PDF
导出
摘要 采用三带紧束缚模型和非平衡格林函数的方法理论研究了铁磁电极单层之字形二硫化钼纳米带量子结构中的自旋电子输运性质.结果发现,由于铁磁电极的磁交换作用与散射区域电场共同影响,可获得能量依赖的100%自旋极化,得到纯的自旋流.这表明在该结构通过调控入射能可以实现自旋电子开关效应.此外,还发现当电导完全自旋极化时,磁交换场强度可以对巨磁阻效应进行有效的调控.该工作可为基于单层二硫化钼纳米带设计巨磁阻器件以及自旋过滤器提供理论参考. Spintronics is a new type of electronics based on electron spin rather than charge as the information carrier,which can be stored and calculated by regulating and manipulating the spin.The discovery and application of the giant magnetoresistance effect opens the door to the application of electron spin properties.Realizing ondemand control of spin degree of freedom for spin-based devices is essential.The two-dimensional novel material,monolayer transition metal dichalcogenide(TMD)(MoS_(2) is a typical example from the family of TMD materials),has become an excellent platform for studying spintronics due to its novel physical properties,such as direct band gap and strong spin-orbit coupling.Obtaining high spin polarization and achieving controllability of degrees of freedom are fundamental problems in spintronics.In this paper,we construct the monolayer zigzag MoS_(2) nanoribbon quantum structure of electrically controlled ferromagnetic electrode to solve this problem.Based on the non-equilibrium Green’s function method,the regulation of the magnetic exchange field and electrostatic barrier on the spin transport in parallel configuration and anti-parallel configuration are studied.It is found that in the parallel structure,spin transport is obviously related to the magnetic exchange field,and 100%spin filtering can occur near the Fermi energy level to obtain pure spin current.When an additional electric field is applied to the middle region,the spin filtering effect is more significant.Therefore,the spin switching effect can be achieved by regulating the incident energy.In addition,it is also found that within a specific energy range,electrons in the parallel configuration are excited to participate in transport,while electrons in the anti-parallel structure are significantly inhibited.Consequently,a noticeable giant magnetoresistance effect can be obtained in this quantum structure.Moreover,it can be seen that the magnetic exchange field strength can effectively modulate the giant magnetoresistance effect.These results provide valuable theoretical references for the development of giant magnetoresistance devices and spin filters based on monolayer zigzag MoS_(2) nanoribbons.
作者 张明媚 郭亚涛 付旭日 李梦蕾 任宝藏 郑军 袁瑞玚 Zhang Ming-Mei;Guo Ya-Tao;Fu Xu-Ri;Li Meng-Lei;Ren Bao-Cang;Zheng Jun;Yuan Rui-Yang(Department of Physics,Capital Normal University,Beijing 100048,China;College of Physics Science and Technology,Bohai University,Jinzhou 121013,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2023年第15期212-220,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11804236,11604226,12174038) 北京市教育委员会科技发展计划(批准号:KM201910028017,CIT-TCD201904080) 辽宁省“兴辽英才”青年拔尖人才项目(批准号:XLYC2007141)资助的课题.
关键词 单层之字形二硫化钼纳米带 磁交换场 电场 自旋输运 巨磁阻效应 monolayer zigzag MoS_(2) nanoribbon magnetic exchange field electric field spin transport giant magnetoresistance effect
  • 相关文献

参考文献2

二级参考文献58

  • 1Castro Nero A H, Novoselov K 2011 Rep. Prog. Phys. 74 082501.
  • 2Liu W L, Chen C, Shen Q W 2008 Chin. Phys. Lett. 25 227.
  • 3Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Na- ture Nanotechnol. 6 147.
  • 4Wang H, Yu L L, Lee Y H 2012 Nano Lett. 12 4674.
  • 5Kim S, Konar A, Hwang W S Lee J H, Lee J Y, Yang J Y, Jung C H, Kim H S, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D D, Choi W, Kim K 2012 Nature Commun. 3 1011.
  • 6Mak K F, C Lee H G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805.
  • 7Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chert X D, Zhang H 2012 ACS Nano 6 74.
  • 8Alam K, Lake R K 2012 IEEE Trans. Electron DEC. 59 3250.
  • 9Wang Q H, Kourosh K Z, Kis A, Coleman J N, Strano M S 2012 Nature Nanotechnol. 7 699.
  • 10Lee H S, Min S W, Chang Y G, Park M K, Nam T W, Kim H, Kim JH, Ryn S M, Im S 2012 Nano Lett. 12 3695.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部