期刊文献+

Contribution of the cryosphere to runoff in“Chinese water tower”based on environmental isotopes 被引量:1

原文传递
导出
摘要 Cryospheric meltwater is an important runoff component and it profoundly influences changes in water resources in the Tibetan Plateau.Significant changes in runoff components occur in the three-river headwater region(TRHR),which is an important part of“Chinese Water Tower”due to climate warming.However,these effects remain unclear owing to the sparse and uneven distribution of monitoring sites and limited field investigations.Quantifying the contribution of cryospheric meltwater to outlet runoff is a key scientific question that needs to be addressed.In this study,we analyzed 907 precipitation,river water,ground ice,supra-permafrost water,and glacier snow meltwater samples collected from October 2019 to September 2020 in the TRHR.The following results were obtained:(1)There was significant spatio-temporal variation in stable isotopes in different waters;(2)The seasonal trends of stable isotopes for different waters,the relationship between each water body and the local meteoric water line(LWML)confirmed that river water was mainly recharged by precipitation,supra-permafrost water,and glacier snow meltwater;(3)Precipitation,supra-permafrost water,and glacier snow meltwater accounted for 52%,39%,and 9%of river water,respectively,during the ablation period according to the end-member mixing analysis(EMMA);(4)In terms of future runoff components,there will be many challenges due to increasing precipitation and evaporation,decreasing snow cover,glacier retreat,and permafrost degradation.Therefore,it is crucial to establish the“star-machine-ground”observation networks,forecast extreme precipitation and hydrological events,build the“TRHE on the Cloud”platform,and implement systematic hydraulic engineering projects to support the management and utilization of water resources in the TRHR.The findings of environmental isotope analysis provide insights into water resources as well as scientific basis for rational use of water resources in the TRHR.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第5期173-188,共16页 地学前缘(英文版)
基金 supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0405) National Nature Science Foundation of China(42077187) Chinese Academy of Sciences Young Crossover Team Project(JCTD-2022-18) the National Key Research and Development Program of China(2020YFA0607702) the"Western Light"-Key Laboratory Cooperative Research Cross-Team Project of Chinese Academy of Sciences,Innovative Groups in Gansu Province(20JR10RA038).
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部