期刊文献+

Infection density pattern of Cardinium affects the responses of bacterial communities in an invasive whitefly under heat conditions

原文传递
导出
摘要 Communities of bacteria,especially symbionts,are vital for the growth and development of insects and other arthropods,including Bemisia tabaci Mediterranean(MED),a destructive and invasive insect pest.However,the infection density patterns and influence factors of bacteria in whiteflies,which mainly include symbionts,remain largely unclear.To reveal the different density patterns of Cardinium in B.tabaci MED popula-tions and the impacts of high temperatures on whiteflies with different Cardinium density infection patterns,2 isofemale lines isolated from B.tabaci MED from the same geo-graphical population of China and from B.tabaci MED collected from other countries and locations were examined using several techniques and methods,including fluorescence in situ hybridization(FISH),quantitative real-time polymerase chain reaction(qPCR),16S rRNA gene sequencing,and 2b-RAD sequencing.The results showed that there were 2 different infection density patterns of Cardinium in B.tabaci MED(including 1 high-density pattern and 1 low-density pattern).For whiteflies with low-density Cardinium,conventional PCR could not detect Cardinium,but the other techniques confirmed that there was a low level of Cardinium within hosts.High temperature significantly decreased the diversity of bacterial communities:the relative titer of Cardinium increased but the density of Rickettsia decreased in the isofemale line with high-density Cardinium.How-ever,high temperature did not influence the diversity and symbiont density in the line with low-density Cardinium.Moreover,high temperature influenced the functions of bacterial communities in whiteflies with high-density Cardinium but did not affect the bacterial functions in whiteflies with low-density Cardinium.Our results provide novel insights into the complex associations between symbionts and host insects.
出处 《Insect Science》 SCIE CAS CSCD 2023年第4期1149-1164,共16页 昆虫科学(英文版)
基金 supported by the National Natural Science Foundation of China(31872030) the Taishan Scholar Foundation of Shandong Province of China,the First Class Grassland Science Discipline Program of Shandong Province,China,and the Qingdao Agricultural University High-level Talent Fund(663-1121025).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部