期刊文献+

Synergistic coupling of Ni_(3)ZnC_(0.7)decorated with homogeneous multimetal CoNiCuFe nitrogen-codoped carbon matrix as high-entropy catalysts for efficient overall water splitting 被引量:1

原文传递
导出
摘要 Due to unique electrical properties and high catalytic efficiency,transition metal nitrogen-codoped car-bide(TM-N-C)has attracted tremendous interest as a multifunctional electrocatalyst for water splitting.Unlike traditional single-source modification,herein a novel pomegranate-like high-entropy(HE)elec-trocatalyst of Ni_(3)ZnC_(0.7)decorated with homogeneous multimetal(Fe,Co,Cu,and Ni)nitrogen-codoped carbon matrix(Ni_(3)ZnC_(0.7)@CoNiCuFe-NC)is reported.It can be implemented by the simple thermal an-nealing method of multimetal codoped zeolitic imidazolate framework(ZIF).Benefiting from the syn-ergistic effects of plentiful TM-N-C species,template effect of ZIF and distinct nanoporous structure,HE electrocatalyst Ni_(3)ZnC_(0.7)@CoNiCuFe-NC exhibits outstanding electrocatalytic performance.When ap-plied in strong alkaline electrolyte(1.0 M KOH),the overpotentials of Ni_(3)ZnC_(0.7)@CoNiCuFe-NC present as low as 202 and 97 mV for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)at 10 mA cm^(−2)current density.Surprisingly as a bifunctional electrode,it can achieve the low cell voltage of 1.53 V at 10 mA cm^(−2)current density for overall water splitting,which is comparable to conventional IrO_(2)||Pt/C electrode and superior to the recently reported analogous bifunctional catalysts.Thus,the work proposes the direction for the rational design of homogeneous distribution of TM-N-C material for water splitting in the green hydrogen energy industry.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第4期26-33,共8页 材料科学技术(英文版)
基金 This work was financially supported by the National Natural Science Foundation of China(Nos.22008180 and 21878231) the Natural Science Foundation of Tianjin(Nos.19JCQNJC05700 and 19JCZDJC37300) the Tianjin College Student Innovation and Entrepreneurship Training Program(No.202010058034).This work was also supported by the Analytical&Testing Center of Tiangong University for structural characterization tests.
  • 相关文献

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部