期刊文献+

Determination of multiaxial stress rupture criteria for creeping materials:A critical analysis of different approaches

原文传递
导出
摘要 Materials in engineering applications are rarely uniaxially-loaded.In reality,failures under multiaxial loading has been widely observed in engineering structures.The life prediction of a component under multiaxial stresses has long been a challenging issue,particularly for high temperature applications.To distinguish the mode of failure ranging from a maximum principal stress intergranular damage to von Mises effective stress rupture mode a multiaxial stress rupture criterion(MSRC)was originally proposed by Sdobyrev and then Hayhurst and Leckie(SHL MSRC).A multiaxial-factor,α,was developed as a result which was intended to be a material constant and differentiates the bias of the MSRC between maxi-mum principal stress and effective stress.The success of the SHL MSRC relies on accurately calibrating the value ofαto quantify the multiaxial response of the material/geometry combination.To find a more suitable approach for determining MSRC,the applicability of different methods are evaluated.Given that the resulting analysis of the various approaches can be affected by the creep failure mechanism,princi-ples in the determination of MSRC with and without using continuum damage mechanics approaches are recommended.The viability of uniaxial material parameters in correlating withαthrough the analysis of available data in literature is also presented.It is found that the increase of the uniaxial creep dam-age tolerance parameterλis accompanied bythe decreaseof theα-value,whichimplies thatthe creep ductility plays an important role in affecting the multiaxial rupture behavior of materials.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第6期14-25,共12页 材料科学技术(英文版)
基金 This work was financially supported by Projects of the National Natural Science Foundation of China(Nos.521130511,11502082,52075174) the Higher Education Discipline Innovation Project("111 Project")(No.B13020).Helpful discussions with Jian-Feng Wen and Guo-Zhen Wang at the East China University of Science and Technology and Qiang Xu at the University of Huddersfield are gratefully acknowledged.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部