期刊文献+

Zn-0.8Mn alloy for degradable structural applications:Hot compression behaviors,four dynamic recrystallization mechanisms,and better elevated-temperature strength 被引量:2

原文传递
导出
摘要 Environmentally degradable Zn-0.8Mn alloy is highly ductile,which lays the foundation for developing high-performance Zn-Mn-based alloys.However,not only constitutive equation of this alloy is unknown,but also its dynamic recrystallization(DRX)behavior is unclear,which makes optimization of hot pro-cessing parameters of this alloy almost dependent on trial-and-error.This work aims to tackle these prob-lems.The constitutive equation was deduced to be˙ε=1.38×10^(12)×[sinh(0.009σ)]^(8)exp(-135150/RT).A processing map of the alloy was obtained for the first time,which shows that it has excellent hot formability with narrow instability zones.At a final true strain of 0.8,the volume fraction of DRX grains increased from 37%to 79%with temperature increasing from 150℃to 350℃and strain rate decreas-ing from 10 s^(−1)to 10^(-3)s^(−1).Discontinuous DRX(DDRX),continuous DRX(CDRX),twinning-induced DRX(TDRX),and particle stimulated nucleation(PSN)were activated during hot compressions.DDRX was al-ways the main mechanism.TDRX was completely suppressed at 300℃and above.PSN arose from dis-persed MnZn 13 particles.Furthermore,Zn-0.8Mn alloy exhibited elevated-temperature strengths better than pure Zn and Zn-Al-based alloys.At 300℃and 0.1 s^(−1),its peak stress was 1.8 times of pure Zn,owing to MnZn 13 particles of 277±79 nm impeding the motion of grain boundaries and dislocations.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第6期159-175,共17页 材料科学技术(英文版)
基金 This work was financially supported by the National Natural Science Foundation of China(No.52071028) the Fundamental Research Funds for the Central Universities(Project No.FRF-TP-19-022A3Z).
  • 相关文献

同被引文献38

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部