期刊文献+

Bio-inspired high-efficiency photosystem by synergistic effects of core-shell structured Au@CdS nanoparticles and their engineered location on{001}facets of SrTiO_(3)nanocrystals

原文传递
导出
摘要 Natural photosynthesis,which provides a green and high-efficiency energy conversion path by spatial separation of photogenerated carriers through combined actions of molecules ingeniously arranged in an efficient solar nanospace,highlights the importance of rational nanostructure design to realize artificial high-efficiency photosystem.Inspired by these unique features,we constructed a high-efficiency ternary photosystem by selectively decorating the{001}facets of 18-facet SrTiO_(3)with Au@CdS photosensitizers via a green photo-assisted method.Benefiting from the dual-facilitated charge carriers transportation in core-shell structured Au@CdS heterojunction and well-faceted 18-facet SrTiO_(3)nanocrystal,such a photo-catalyst could realize the effective spatial separation of photogenerated electrons and holes.As expected,the 18-facet SrTiO_(3)/Au@CdS photocatalyst exhibits superior activity in visible-light-driven photocatalytic hydrogen evolution(4.61 mmol h^(−1)g^(−1)),166%improvement in comparison with randomly deposited Au@CdS(1.73 mmol h^(−1)g^(−1)).This work offers new insight into the development of green and high-efficiency photocatalytic systems based on the rational nanostructure design by crystal facet engineering.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第5期159-168,共10页 材料科学技术(英文版)
基金 This work was financially supported by the Natural Science Foundation of China(Nos.51832003 and 52003212) the Fun-damental Research Funds for the Central University(No.WUT 2020III034).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部