期刊文献+

基于关联规则的超市购物个性化推荐研究

Research on Personalized Recommendation of Supermarket Shopping Based on Association Rules
下载PDF
导出
摘要 【目的】优化因消费者需求改变而受到局限的传统方法。【方法】通过收集沃尔玛超市两个时段9835名顾客的消费数据,使用Apriori算法对数据进行挖掘和分析,得到3种推荐方法,分别为按商品销售排名推荐最畅销的前N件商品、根据Apriori算法挖掘出的关联规则进行商品捆绑销售、根据定义的强关联规则推荐系数来推荐商品。【结果】在运行程序后,发现后两种推荐方式挖掘出的关联规则商品不完全相同,且对相同关联规则商品的推荐度不同。【结论】推荐策略的实施将提高超市商品的销售量,有助于满足顾客的个性化需求。 [Purposes]The aim of this paper is to optimize traditional methods that are limited by changes in consumer demand.[Methods]By collecting the consumption data of 9835 customers in Wal-Mart supermarket in two periods,Apriori algorithm was used to mine and analyze the data,and three recommendation methods were obtained,which were recommending the best-selling top N items according to the sales ranking of goods,bundling goods according to the association rules mined by Apriori algorithm,and recommending goods according to the defined strong association rule recommendation coefficient.[Findings]After running the program,it is found that the association rule products mined by the latter two recommendation methods are not exactly the same,and the recommendation degree of the same association rule products is different.[Conclusions]The implementation of the recommendation strategy will increase the sales of supermarket goods and help to meet the personalized needs of customers.
作者 万珍奇 杨佳贤 李雪婷 刘叶青 WAN Zhenqi;YANG Jiaxian;LI Xueting;LIU Yeqing(School of Mathematics and Statistics,Henan University of Science and Technology,Luoyang 471000,China)
出处 《河南科技》 2023年第13期32-35,共4页 Henan Science and Technology
基金 河南科技大学2022年SRTP项目(2022235)。
关键词 关联规则 APRIORI算法 推荐系数 个性化推荐 association rules Apriori algorithm recommendation coefficient personalized recommendation
  • 相关文献

参考文献7

二级参考文献32

  • 1张丽娜,顾耀林.一种基于离散梯度向量域的可视化应用研究[J].计算机工程,2006,32(16):218-220. 被引量:2
  • 2[1]Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Database. Washington, DC: In Proc. 1993 ACMSIGMOD Int. Conf. Management of Data, 1993-05:207-216
  • 3[2]Park J S, Chen M S, Yu P S. An Effective Hash Based Algorithm for Mining Association Rules. San Jose, CA:In Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data, 1995-05:175-186
  • 4[3]Han J, Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation. Dallas,TX:In Proc.2000 ACM-SIGMOD Iht. Conf.Management of Data, 2000-05:1-12
  • 5[4]Han J, Kambe M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., 2001
  • 6Agrawal R, Imieliski T, Swami A. Mining association rules between sets of items in large databases [A]. In: Proceedings of ACM SIGMOD Conference on Management of Data [C]. Washington, DC, 1993. 207-216.
  • 7Agrawal R, Srikant R. Fast algorithms for mining association rules [A]. In: Proceedings of the 1994 International Conference on Very Large Databases [C]. Santiago, Chile, 1994.487-499.
  • 8Park J S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules [A]. In: Proceedings of the 1995 ACM-SIGMOD International Conference on Management of Data [C]. San Jose, CA, 1995. 175-186.
  • 9Cai C H, Fu A W C, Cheng C H, et al. Mining association rules with weighted items [A]. In: Proc of IEEE International Database Engineering and Applications Symposium [C]. Cardiff, Wales, UK, 1998. 68-77.
  • 10Agrawal R, Shafer J C. Parallel mining of association rules: design, implementation and experience [J]. Special Issue on Data Mining, IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 962-969.

共引文献248

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部