期刊文献+

BP神经网络在测控设备自动调平系统中的应用

The application of BP neural network in the automatic leveling system of measurement and control equipment
下载PDF
导出
摘要 Ka频段车载测控设备在航天领域的快速发展,促进了电子水平传感器自动调平系统在车载测控设备的广泛应用。目前设备都是在跟踪目标前利用调平系统传感器反馈的信号进行调平,并计算出补偿误差,而在天线运转过程中重心变化又引入了一定的系统误差,降低了设备的外测精度。利用BP神经网络在天线实时跟踪目标时电子水平传感器反馈的信号预测误差,进行动态补偿。通过实际验证,证明可以减少设备测量误差和达到提高测量精度的目的。 With the rapid development of the Ka frequency-band vehicle test and control equipment in the aerospace field,it has promoted the widespread application of electronic level sensor automatic leveling systems in vehicle measurement and control equipment.At present,the device uses the signal of the leveling system sensor feedback before tracking the target,and calculates the compensation error.During the antenna operation,the center of gravity changes a certain system error,which reduces the external test accuracy of the device.The BP neural network is used to dynamically compensate the signal prediction error fed back by the electronic level sensor when the antenna is tracking the target in real time.Through actual verification,it proves that the equipment measurement error can be reduced and the purpose of improving measurement accuracy can be achieved.
作者 薛缠明 赵翔宇 Xue Chanming;Zhao Xiangyu(Taiyuan Satellite Launch Center,Taiyuan 036301,China)
出处 《现代计算机》 2023年第11期68-70,83,共4页 Modern Computer
关键词 测控设备 自动调平系统 BP神经网络 measurement and control equipment automatic leveling system BP neural network
  • 相关文献

参考文献3

二级参考文献13

  • 1GROSCHWITZ N,POLYZOS G.A time series model of long-term traffic on the NSFnet backbone[C]// Proceedings the IEEE International Conference on Communications(ICC'94).New Orleans:IEEE,1994:164-168.
  • 2BASU S,MUKHERIEE A.Time series models for internet traffic[C]// INFOCOM'96,Fifteenth Annual Joint Conference of IEEE Computer Societies,Networking the Next Generation.San Francisco,USA:IEEE,1996,2:611-620.
  • 3ANTONIADIS A,OPPENHEIM G.Wavelets and statistics[M]// New York:Springer Verlag,1995.
  • 4DONOHO D L.Wavelet shrinkage and WVD-a ten-minute tour[M]// Progress in Wavelet Analysis and Application.France:[s.n.],1993:109-128.
  • 5DONOHO D L.De-noising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 6HELLERSTEIN J L,ZHANG F,SHABABUDDIN P.Characterizing normal operation of a web server:application to workload forecasting and problem detection[C/OL]// Proceedings of the Computer Measurement Group[2006-12-01].http://www.research.ibm.com/PM/cmg98f.ps.
  • 7PAXSON V,FLOD S.Wide-area traffic:the failure of possion modeling[C]// Proceedings of the ACM Sigcomm'94.New York:ACM Press,1994:257-268.
  • 8KERKYACHARIAN J G,PICARD D.Wavelet shrinkage:asymptotia[J].Journal of the Royal Statistical Society,Series B,1996,57(2):301-369.
  • 9RUMELHART D,HINTON G,WILLIAMS R.Learning representations by back-propagating errors[J].Nature,1986,323(9):533-536.
  • 10Hanselman,Littefield,李人厚,等.精通MATLAB:综合辅导与指南.西安:西安交通大学出版社,2001.

共引文献287

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部