期刊文献+

Influence of element substitutions on poisoning behavior of ZrV_(2)alloy:theoretical and experimental investigations 被引量:1

下载PDF
导出
摘要 A ZrV_(2)alloy is typically susceptible to poisoning by impurity gases,which causes a considerable reduction in the hydrogen storage properties of the alloy.In this study,the adsorption characteristics of oxygen on ZrV_(2)surfaces doped with Hf,Ti,and Pd are investigated,and the effect of oxygen on the hydrogen storage performance of the alloy was discussed.Subsequently,the adsorption energy,bond-length change,density of states,and differential charge density of the alloy before and after doping are analyzed using the first-principles method.The theoretical results show that Ti doping has a limited effect on the adsorption of oxygen atoms on the ZrV_(2)surface,whereas Hf doping decreases the adsorption energy of oxygen on the ZrV_(2)surface.Oxygen atoms are more difficult to adsorb at most adsorption sites on Pd-substituting surfaces,which indicates that Pd has the best anti-poisoning properties,followed by Hf.The analysis of the differential charge density and partial density of states show that the electron interaction between the oxygen atom and surface atom of the alloys is weakened,and the total energy is reduced after Hf and Pd doping.Based on theoretical calculations,the hydrogen absorption kinetics of ZrV_(2),Zr_(0.9)Hf_(0.1)V_(2),and Zr(V_(0.9)Pd_(0.1))_(2) alloys are studied in a hydrogen-oxygen mixture of 0.5 vol%O_(2) at 25℃.The experimental results show that the hydrogen storage capacities of ZrV_(2),Zr_(0.9)Hf_(0.1)V_(2),and Zr(V_(0.9)Pd_(0.1))_(2) decrease to 19%,69%,and 80%of their original values,respectively.The order of alloy resistance to 0.5 vol%O_(2) poisoning is Zr(V_(0.9)Pd_(0.1))_(2)>Zr_(0.9)Hf_(0.1)V_(2)>ZrV_(2).Pd retains its original hydrogen absorption performance to a greater extent than undoped surfaces,and it has the strongest resistance to poisoning,which is consistent with previous theoretical calculations.
出处 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期253-266,共14页 核技术(英文)
基金 the Youth Innovation Promotion Association,Chinese Academy of Science(No.2019263) the National Natural Science Foundation of China(No.12105355).
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部