期刊文献+

基于模糊推理的换道决策与仿真验证 被引量:1

Lane Change Decision and Simulation Verification Based on Fuzzy Reasoning
下载PDF
导出
摘要 换道决策是汽车换道过程中的重要环节,合理的决策模型可以有效减少由于车辆危险换道行为所引发的交通事故。为使换道模型能适应动态交通道路环境,以美国交通部联邦公路管理局NGSIM项目采集的实时数据为依据,提取车辆换道时交互车辆的相对距离、车速等相关特征参数并分析,基于模糊推理理论建立车辆换道动态决策模型;通过搭建的Prescan与MATLAB/Simulink联合仿真平台,采用NGSIM实测数据对换道决策模型进行验证。结果表明,基于模糊推理的二元决策换道模型准确率达到85%,能准确判断换道时机,可为智能车换道提供理论基础。 Lane change decision making is an important part in the lane change process of a vehicle.Reasonable decision model can effectively reduce traffic accidents caused by dangerous lane change behavior of vehicles.In order to enable the lane change model to adapt to dynamic traffic road environments,based on the real-time data collected by the NGSIM project of the Federal Highway Administration of the United States Department of Transportation,the relative distance,speed and other relevant characteristic parameters of interactive vehicles during lane change were extracted and analyzed.The dynamic decision model of vehicle lane changing was established based on fuzzy reasoning theory.Through the established Prescan and MATLAB/Simulink co-simulation platform,the NGSIM measured data was used to verify the lane change decision model.The results show that the accuracy of the binary decision lane change model based on fuzzy reasoning reaches 85%and can accurately determine the lane change timing,which can provide a theoretical basis for lane change of intelligent vehicle.
作者 冯樱 乔宝山 江子旺 袁显举 FENG Ying;QIAO Baoshan;JIANG Ziwang;YUAN Xianju(Automotive Engineering College,Hubei University of Automotive Technology,Shiyan 442002,Hubei,China)
出处 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期155-162,共8页 Journal of Chongqing Jiaotong University(Natural Science)
基金 湖北省中央引导地方科技发展专项湖北省汽车动力传动与控制工程技术研究中心创新平台建设项目(2019ZYYD019)。
关键词 车辆工程 换道决策 模糊推理 NGSIM 仿真验证 vehicle engineering lane change decision fuzzy reasoning NGSIM simulation verification
  • 相关文献

参考文献3

二级参考文献28

  • 1杨志刚,戚志锦,黄燕.智能车辆自由换道轨迹规划研究[J].重庆交通大学学报(自然科学版),2013,32(3):520-524. 被引量:22
  • 2孙逊,胡光锐,李剑萍.一种基于模糊聚类的隶属函数定义方法[J].计算机应用与软件,2005,22(7):86-88. 被引量:8
  • 3张志红,韩直,肖盛燮,常贵智,甘守武.基于ANFIS交通流实时预测及在MATLAB中的实现[J].重庆交通学院学报,2007,26(3):112-115. 被引量:12
  • 4Oliver N, Pentland A P. Graphical models for driver behavior recognition in a SmartCar[C]// 2000 Proceedings of the IEEE Intelligent Vehicles Symposium. 2000: 7-12.
  • 5Kuge, Yamamura T, Shimoyama O, et al. A driver behavior recognition method based on a driver model framework[J]. SAE, 2000-01-0349:1-8.
  • 6Takuya Mizushima, Pongsathorn Raksincharoensak,Masao Nagai. Direct yaw-moment control adapted to driver behavior recognition[C]. SICE-ICASE International Joint Conference, 2006:534-539.
  • 7Van Leeuwen C J. Driver modeling and lane change maneuver prediction[D]. Groningen: University of Groning, 2010.
  • 8Kondoh T, Yamamura T, Kitazaki S, et al. Identification of visual cues and quantification of drivers' perception of proximity risk to the lead vehicle in car- following situations[J]. Journal of Mechanical Systems for Transportation and Logistics, 2008, 1(2): 170-180.
  • 9GIPPS P G. A model for the structure of lane-changing decisions[J]. Transportation Research,1986,20(5):403-414.
  • 10YANG Qi, KOUTSOPOULOS H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C(Emerging Technologies),1996,4(3):113-129.

共引文献41

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部