摘要
The interesting hybrid properties of ceramics and metals induced by unique nano-laminated structures make the M_(n+1)AX n(MAX)phase attractive as a potential protective coating for vital structural compo-nents in harsh systems.However,an extremely narrow phase-forming region makes it difficult to prepare MAX phase coatings with high purity,which is required to obtain coatings with high-temperature anti-oxidation capabilities.This work describes the dependence of the phase evolution in deposited M-Al-C(M=Ti,V,Cr)coatings as a function on temperature using in-situ X-ray diffraction analysis.Compared to V_(2)AlC and Cr_(2)AlC MAX phase coatings,the Ti_(2)AlC coating displayed a higher phase-forming tempera-ture accompanied by a lack of any intermediate phases before the appearance of the Ti_(2)AlC MAX phase.The results of the first-principle calculations correlated with the experience in which Ti_(2)AlC exhibited the largest formation energy and density of states.The effect of the phase compositions of these three MAX phase coatings on mechanical properties were also investigated using ex-situ Vickers and nano-indenter tests,demonstrating the improved mechanical properties with good stability at high temperatures.These findings provide a deeper understanding of the phase-forming mechanism of MAX phase coatings to guide the preparation of high-purity MAX phase coatings and the optimization of MAX phase coatings with expected intermediate phases such as Cr_(2)C,V_(2)C etc.,as well as their application as protective coat-ings in temperature-related harsh environments.
基金
financially supported by the National Natural Science Foundation of China (Nos.52025014,52171090,52101109,U22A20111).