摘要
森林一旦发生火灾,对生态环境会造成极大的破坏,近年来各种火灾探测方式受到业内各界广泛关注,森林林火在监测环节,不同载体与不同数据在应用环节存在不同程度的局限和约束。基于此,提出一种以深度学习无人机红外影像技术为基础的森林林火火灾燃烧点监测模型,其主要目的是降低无人机在森林林火监测环节出现的数据遗失、传输延迟等问题,有助于提高森林林火火灾监测环节的效率及工作能力,以供参考。
Once a fire breaks out in the forest,it will cause great damage to the ecological environment.In recent years,various fire detection methods have received extensive attention from all walks of life in the industry.Because forest fires are in the monitoring process,different carriers and different data have different degrees in the application process.limitations and constraints.Based on this,this paper proposes a forest fire burning point monitoring model based on deep learning and UAV infrared imaging technology.The main purpose is to reduce the data loss and transmission delay of UAV in forest fire monitoring.It is helpful to improve the efficiency and working ability of forest fire monitoring for reference.
作者
梁远志
Liang Yuanzhi(Sanhe Digital Surveying and Mapping Geographic Information Technology Co.,Ltd.,Tianshui 741000,Gansu,China)
出处
《林业科技情报》
2023年第3期13-15,共3页
Forestry Science and Technology Information
关键词
无人机
红外影像
森林林火监测
Unmanned aerial vehicle
infrared image
forest fire monitoring