期刊文献+

改进随机森林算法在手指手势识别中的应用 被引量:1

Application of improved random forest algorithm in finger gesture recognition
下载PDF
导出
摘要 为了提高基于加速度传感器手指手势识别算法的性能,研究了一种双带通滤波优化随机森林算法模型,应用于手指手势识别。该方法利用MPU6050六轴传感器和HC—06蓝牙模块作为数据采集系统,采集食指的4个日常动作作为数据集。采用双带通滤波算法对数据集进行预处理并利用随机森林分类器对处理后的数据进行手势的分类预测。实验结果表明:该方法获得了98.5%的手指手势识别率,有效地识别了4种手指动作,具有良好的稳定性和准确性。 In order to improve the performance of finger gesture recognition algorithm based on acceleration sensor,a double band-pass filtering optimized random forest algorithm model is studied and applied to finger gesture recognition.The method uses MPU6050 six-axis sensor and HC—06 Bluetooth module as the data acquisition system,and collects four daily movements of the index finger as the dataset.The dataset is preprocessed by double band-pass filtering algorithm,and the gesture is classified and predicted by random forest classifier.Experimental results show that this method achieves 98.5%finger gesture recognition rate,effectively recognizes four finger movements,and has good stability and accuracy.
作者 程傲霜 王强 CHENG Aoshuang;WANG Qiang(School of Information Science Technology,Nantong University,Nantong 226000,China)
出处 《传感器与微系统》 CSCD 北大核心 2023年第8期165-168,共4页 Transducer and Microsystem Technologies
基金 江苏省高等学校自然科学研究重大项目(19KJ320004)。
关键词 手指手势识别 双带通滤波算法 随机森林算法 六轴传感器 蓝牙模块 finger gesture recognition double band pass filtering algorithm random forest algorithm six-axis sensor Bluetooth module
  • 相关文献

参考文献15

二级参考文献94

  • 1高宏力,许明恒,傅攀,杜全兴.基于动态树理论的刀具磨损监测技术[J].机械工程学报,2006,42(7):227-230. 被引量:24
  • 2Lu Tao. A Motion Control Method of Intelligent Wheelchair Based on Hand Gesture Recognition [C]//2013 IEEE 8th Conference on Industrial Electronics and Applications, 2013 : 957-962.
  • 3Lian Shiguo, Hu Wei, Wang Kai. Automatic User State Recogni- tion for Hand Gesture Based Low-Cost Television Control System [J]. IEEE Transactions on Consumer Electronics, 2014,60( 1 ) : 107-I 15.
  • 4Xie Renqiang, Sun Xia, Xia Xiang, et al. Similarity Matching- Based Extensible Hand Gesture Recognition [J]. IEEE Sensors Journal,2015,15(6) :3475-3483.
  • 5Zhu Chun, Sheng Weihua. Wearable Sensor-Based Hand Gesture and Daily Activity Recognition for Robot-Assisted Living [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A : Sys- tems and Humans, 2011,41 (3) : 569-573.
  • 6Alon Jonathan, Athitsos Vassilis, Yuan Quan, et al. A Unified Framework for Gesture Recognition and Spatiotemporal Gesture Segmentation [J ]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence ,2009,31(9) : 1685-1699.
  • 7Zhou Shengli, Fei Fei, Zhang Guanglie, et al. 2D Human Gesture Tracking and Recognition by the Fusion of MEMS Inertial and Vi- sion Sensors[J ]. IEEE Sensors Journal, 2014,14(4) : 1160-1170.
  • 8Wang Jeen- Shing, Chuang Fang- Chen. An Accelerometer- Based Digital Pen With a Trajectory Recognition Algorithm for Handwrit- ten Digit and Gesture Recognition [J]. IEEE Transactions on In- dustrial Electronics, 2012,59 (7) : 2998 -3007.
  • 9. Hsu Yu-Liang, Chu Cheng-Ling, Tsai Yi-Ju, et al. An Inertial Pen with Dynamic Time Warping Recognizer for Handwriting and Ges- ture Recognition [ J ]. IEEE Sensors Journal, 2015,15 ( 1 ) : 154-163.
  • 10Zhang Xu, Chen Xiang,Li Yun, et al. A Framework for Hand Ges- ture Recognition Based on Accelerometer and EMG Sensors [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A : Sys- tems and Humans, 2011,41 (6) : 1064-1076.

共引文献121

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部