期刊文献+

基于行人检测与峰值密度聚类的行人多次徘徊检测算法

Pedestrian Multiple Wandering Detection Algorithm Combining Pedestrian Detection and Peak Density Clustering
下载PDF
导出
摘要 为了提升传统行人徘徊检测方法的准确性,提出了一种结合行人检测与峰值密度聚类的行人多次徘徊检测算法(Multiple Wander Detection Combining Pedestrian Detection and Peak Density ClusteringMWD_PD_DPC)。首先,在行人检测算法的特征提取网络与FPN层之间加入自适应卷积注意力机制(SKNet),提升模型在多尺度场景下行人检测精度。然后,提出了柔性非极大值抑制(DIOU-Soft-NMS)来缓解行人在密集场景下错误抑制的现象,提升行人检测算法在密集场景下的检测精度。最后,使用峰值密度聚类算法(DPC)对行人的轨迹进行分析,来判断是否发生徘徊行为。并通过AdaFace人脸识别算法对徘徊的行人进行人脸匹配,来判断行人是否在不同时间段多次发生徘徊行为。实验表明,该方法单次徘徊检测的准确率到达了94.6%。行人多次徘徊检测的准确率到达了78.7%。 In order to improve the accuracy of traditional pedestrian wandering detection methods,a pedestrian wandering detection algorithm(Multiple Wander Detection Combining Pedestrian Detection and Peak Density Clustering MWD_PD_DPC)is proposed,which combines pedestrian detection with peak density clustering.First,an adaptive convolutional attention mechanism(SKNet)is added between the feature extraction network and the FPN layer of the pedestrian detection algorithm to improve the accuracy of pedestrian detection in multi-scale scenes.Then,the improved flexible non maximum suppression(DIOU-Soft-NMS)is used to alleviate the phenomenon of false suppression of pedestrians in dense scenes and improve the detection accuracy of pedestrian detection algorithms in dense scenes.Finally,the peak density clustering algorithm(DPC)is used to analyze the tracks of pedestrians to determine whether wandering behavior occurs.And through adaface face recognition algorithm to match the faces of wandering pedestrians,we can judge whether pedestrians have wandered for many times.The experiment shows that the accuracy of single wandering detection reaches 94.6%.The accuracy rate of pedestrian multiple wandering detection reached 78.7%.
作者 查祖福水 白梅娟 魏永勇 秦亚洲 侯帅 CHA Zu-fu-shui;BAI Mei-juan;WEI Yong-yong;QIN Ya-zhou;Hou Shuai(Hebei University of engineering,Handan 056038,China;China Academy of weapons science,Beijing 100089,China;China North Vehicle Research Institute,Beijing 100071,China)
出处 《电脑与信息技术》 2023年第4期24-27,45,共5页 Computer and Information Technology
基金 河北省重点研发计划项目(项目编号:21350101D)。
关键词 行人检测 SKNet 非极大值抑制 峰值密度聚类 人脸识别 pedestrian detection SKNet non maximum suppression peak density clustering face recognition
  • 相关文献

参考文献6

二级参考文献25

  • 1张起贵.基于视频序列的徘徊检测跟踪算法的研究与实现[D].太原:太原理工大学,2011.
  • 2郑江滨,李秀秀,张艳宁.视频监视中的运动目标跟踪算法[J].系统工程与电子技术,2007,29(11):1991-1993. 被引量:8
  • 3BIRD N D,MASOUD O,PAPANIKOLOPOULOS N P,ISAACS A.Detection of loitering individuals in public transportation areas[J] .IEEE Transactions on Intelligent Transportation Systems,2005,6 (2):167-177.
  • 4ELHAMOD M,LEVINE M D.Automated real-time detection of potentially suspicious behavior in public transport areas[J] .IEEE Transportation on Intelligent Transportation Systems,2013,14 (2):688.
  • 5SHIANG H P,SCHAAR M. lnfonnation constrained resource alloca- tion in muhieamera wireless surveillance networks[ J ]. IEEE Trans. Circuits and Systems for Video Technology ,2010,2(1(4 ) :505-517.
  • 6WU D,CI S, LUO H,et al. Video surveillance over wireless sensor and aetuator networks using active cameras[J]. IEEE Trans. Auto- matic Control,2011 ,56(10) :2467-2472.
  • 7CALDERARA S,PRATI A,CUCCHIARA R. Mixtures of vim raises distributions for people trajectory shape analysis [J].IEEE Trans. Circuits and Systems for Video Technology,2011,21 ( 4 ) :457-47 1.
  • 8LEE D S, HULL J,EROL B. A Bayesian framework for Gaussian mixture background modeling[ C ]//Proc. IEEE lntenmtional Con- ference on Image Processing. [ S. 1. ] :IEEE Press,2003:973-976.
  • 9BARNICH O, DRIIGENBROECK M. ViBe: A universal back- ground subtraction algorithm for video sequence[ J ]. IEEE Trans. Image Processlng,2011,20(6 ) : 1709-1724.
  • 10CHEN Kun, FU Songyin, SONG Kangkang, et al. A Mean-shift based imbedded computer vision system design tbr real time target tracking[ C]//Prnc. 7th lntenmtional Conference on Computer Science Education. [ S. 1. ] :IEEE Press,2012:1298-1303.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部