期刊文献+

水文变异对深度学习模型训练性能的影响研究

Research on the Influence of Hydrological Variation to the Training Performance of Deep Learning Model
下载PDF
导出
摘要 受气候变化和人类活动的双重影响,黄河流域水文情势发生剧烈演变,水文序列颠覆传统的“一致性”假设。为使深度学习模型更好适应于变异水文序列预测,采用Mann-Kendall检验方法确定径流时间序列变异点,对基于LSTM模型的k-fold交叉验证方法进行改进,提出考虑变异点的k-fold交叉验证方法,分析水文变异对深度学习模型训练的影响。选取黄河支流渭河华县站和黑河祁连山站为研究对象,对比分析不同变异程度的中长期水文序列预测结果。结果表明:渭河华县站的径流时间序列变异发生在1986年和2008年,黑河祁连山站径流时间序列变异发生在1988年;LSTM模型在中长期径流预测中,模型性能主要受时间序列长度的影响,其次受水文变化趋势及变异的影响。 Due to the dual impact of climate change and human activities,the hydrological regime in the Yellow River Basin has undergone drastic evolution,and the hydrological sequence has overturned the traditional assumption of"consistency".In order to better adapt the deep learning model to the prediction of variable hydrological series,the Mann⁃Kendall test method was used to determine the variation points of the runoff time series.The k⁃fold cross validation method based on the LSTM model was improved,and a k⁃fold cross validation method con⁃sidering the variation points was proposed to analyze the impact of hydrological variation on the training of the deep learning model.Selecting Huaxian Station on the Weihe River and Qilianshan Station on the Heihe River as the research objects,we compared and analyzed the mid to long term hydrological series prediction results with different degrees of variation.The results show that the variation of runoff time series at Huaxian Station on the Weihe River occurred in 1986 and 2008,while the variation of runoff time series at Qilian Mountain Station on the Heihe River occurred in 1988.The performance of the LSTM model in medium to long⁃term runoff prediction is mainly influenced by the length of the time series,followed by the trend and variation of hydrological changes.
作者 师小雨 黄强 SHI Xiaoyu;HUANG Qiang(School of Electrical Engineering,Xi'an University of Technology,Xi'an 710048,China;State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China,College of Water Conservancy and Hydropower,Xi'an University of Technology,Xi'an 710048,China)
出处 《人民黄河》 CAS 北大核心 2023年第8期64-67,共4页 Yellow River
基金 国家重点研发计划项目(2017YFC0405900) 国家自然科学基金面上项目(51879213) 中国博士后科学基金资助项目(2019T120933,2017M623332XB) 陕西省自然科学基础研究计划项目(2019JLM-52,2018JQ5145) 陕西省水利科技计划项目(2017slkj-27)。
关键词 水文变异 深度学习模型 预测性能 交叉验证 hydrological variation deep learning model predictive performance cross validation
  • 相关文献

参考文献13

二级参考文献202

共引文献708

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部