摘要
以某地铁出入口基坑工程为背景,设计了3种不同砂土密度条件下的有限土基坑开挖室内模型试验,结合相应数值模型对比,对基坑有限土侧和半无限体侧的桩身水平位移、桩身弯矩及地表沉降进行分析。研究结果表明,随着砂土密度的增大,有限土侧和半无限土侧的桩身水平位移逐渐减小,水平位移与砂土密度呈线性负相关;随着砂土密度增大,两侧桩身弯矩沿桩身的变化曲线一致,有限土侧和半无限土侧的桩身弯矩逐渐减小;随着砂土密度增大,有限土侧和半无限土侧的地表沉降逐渐减小,地表沉降与砂土密度呈线性负相关;其影响范围约1.5倍的开挖深度,有限土侧地表沉降随砂土密度改变的变化速率均小于半无限土侧。
Based on the foundation excavation engineering of a subway entrance and exit,this paper designed three indoor model tests of finite soil foundation excavation under different sand densities.Combined with the comparison of corresponding numerical models,the horizontal displacement of pile body,bending moment of pile body and surface settlement of finite soil side and semi-infinite body side of the foundation excavation were analyzed.The results show that:With the increase of sand density,the horizontal displacement of pile on finite soil side and semi-infinite soil side gradually decreases,and the horizontal displacement is negatively correlated with sand density;With the increase of sand density,the bending moments of both sides of pile are consistent along the pile body,and the bending moments of finite soil side and semi-infinite soil side gradually decrease;With the increase of sand density,the land surface settlement on the finite soil side and semi-infinite soil side gradually decreases,and there is a linear negative correlation between land surface settlement and sand density.The influence range is about 1.5 times of excavation depth,and the change rate of surface settlement with the change of sand density on the finite soil side is less than that on the semi-infinite soil side.
作者
方能榕
李金辉
黄明
伏瑞
余国梁
杨岳峰
FANG Nengrong;LI Jinhui;HUANG Ming;FU Rui;YU Guoliang;YANG Yuefeng(China Construction Eighth Engineering Bureau Co.,Ltd.,Shanghai 201200,China;College of Civil Engineering,Fuzhou University,Fuzhou,Fujian 350116,China;Fujian Academy of Building Research Co.,Ltd.,Fuzhou,Fujian 350108,China)
出处
《施工技术(中英文)》
CAS
2023年第12期177-185,共9页
Construction Technology
基金
中建八局研究课题(2022-2-16)。
关键词
基坑
砂土
密度
变形
模型试验
foundation excavation
sandy soil
density
deformation
model test