摘要
为了提高周界入侵事件的识别率,本文提出一种基于超弱光纤光栅(UWFBG)阵列的光纤周界入侵事件识别方法。该方法通过变分模态分解(VMD)将入侵信号进行分解,然后选择最佳分量并提取其多尺度模糊熵(MFE),与信号过零率(ZCR)相结合构造特征向量,将其输入到Sigmoid函数拟合的支持向量机(SVM),实现对晃动、剪切、刮风、下雨和无入侵5种不同的事件的识别。实验表明,该方法可以准确识别5种常见的事件信号,平均识别率达到98%。此外,该方法可以在输出各入侵事件类别的同时输出各类事件发生的概率值。
To improve the recognition rate of perimeter intrusion events,a fiber optic perimeter intrusion event recognition method based onultra-weak fiber Bragg grating(UWFBG)arrays is proposed in this paper.The intrusion signal by variational modal decomposition(VMD)is decomposed.Then,the best component is selected and its multiscale fuzzy entropy(MFE)is extracted,and combined with the signal zero-crossing rate(ZCR)to construct a feature vector,which is fed into a support vector machine(SVM)fitted with a Sigmoid function to achieve recognition of five different events:waggling,cutting,winding,raining,and non-intrusive.Experiments show that the method can accurately identify five common event signals with an average recognition rate of 98%.In addition,the method can output the probability valuesfor the occurrence of each type of event along with each intrusion event category.
作者
江虹
曾庆龙
李家成
JIANG Hong;ZENG Qing-long;LI Jia-cheng(School of Electrical and Electronic Engineering,Changchun University of Technology,Changchun 130012,China)
出处
《激光与红外》
CAS
CSCD
北大核心
2023年第7期1073-1080,共8页
Laser & Infrared
基金
长春市科技发展计划项目(No.21ZGM37)资助。
关键词
光纤光栅
周界安防
特征提取
入侵事件识别
概率输出
fiber Bragg grating
perimeter security
feature extraction
intrusion event identification
probability output