期刊文献+

基于轻量级卷积神经网络的红鳍东方鲀个体身份无损识别方法

A LIGHTWEITGH CONVOLUTIONAL NEURAL NETWORK-BASED METHOD FOR LOSSLESS IDENTIFICATION OF INDIVIDUAL TAKIFUGU RUBRIPES
下载PDF
导出
摘要 文章充分利用红鳍东方鲀(Takifugu rubripes)体侧纹理特征提出了一种基于轻量级卷积神经网络的鱼类个体身份识别方法,可在无损前提下实现红鳍东方鲀个体身份的高精度识别。首先,采用SOLOv2模型进行前景分割,并结合红鳍东方鲀体型特点,通过质心和哈希值计算方法完成数据集生成和筛选;随后,从多维度分别测试主流深度学习图像分类骨干网络和不同损失函数在红鳍东方鲀身份识别中的效果;继而,在MobileNet v2骨干网络基础上,耦合Softmax Loss函数,建立了一种适用于红鳍东方鲀的个体身份无损识别的最优组合方法。研究结果表明,文章方法准确率可达90.2%,优于其他相关主流方法(准确率73.6%—89.3%),相关研究成果将为循环水养殖鱼类个体身份无损识别和精准生物量估算提供技术支撑。 In aquaculture,avoiding duplicate individual biomass estimation is an important prerequisite for achieving accurate fish biomass estimation,the key is to perform individual fish identification,while few relevant studies have been reported.In this paper,a lightweight convolutional neural network-based identification method for individual fish identity was proposed,which can achieve high accuracy identification of individual Takifugu rubripes without loss.Firstly,SOLOv2 model was used for foreground segmentation,and combined with the characteristics of the body size of Takifugu rubripes,the dataset generation and filtering were completed by the method of calculating the center of mass and Different Hash Algorithms;subsequently,the effectiveness of mainstream deep learning image classification backbone networks and different loss functions in Takifugu rubripes identity recognition were tested separately from multiple dimensions;following that,an optimal combination method for the lossless identification of individual identity of Takifugu rubripes was established based on MobileNet v2 backbone network coupled with Softmax Loss function.The results showed that the accuracy of the proposed method can reach 90.2%,which is better than other related mainstream methods(accuracy 73.6%—89.3%),and related research results will provide technical support for non-destructive identification of individual fish identity and accurate biomass estimation in recirculating water culture.
作者 周佳龙 季柏民 倪伟强 朱松明 赵建 叶章颖 ZHOU Jia-Long;JI Bai-Min;NI Wei-Qiang;ZHU Song-Ming;ZHAO Jian;YE Zhang-Ying(College of Biosystems Engineering and Food Science,Zhejiang University,Hangzhou 310058,China;Ocean Academy,Zhejiang University,Zhoushan 316021,China)
出处 《水生生物学报》 CAS CSCD 北大核心 2023年第10期1545-1552,共8页 Acta Hydrobiologica Sinica
基金 国家重点研发计划(2019YFD0900500) 国家自然科学基金(31902359和32173025)资助。
关键词 身份无损识别 纹理特征 轻量级 卷积神经网络 红鳍东方鲀 Lossless identification of individual Texture characteristics Lightweight Convolutional neural network Takifugu rubripes
  • 相关文献

参考文献3

二级参考文献49

  • 1李爱杰 等.水产动物营养与饲料学[M].北京:中国农业出版社,1994.15-40.
  • 2万蓁蓁,高天翔,张秀梅,盖红珍,刘勇.红鳍东方鲀早期发育和体表黑色素细胞形态学观察研究[J].齐鲁渔业,2007,24(10):12-15. 被引量:2
  • 3董晓平.日本人工养殖红鳍东方缶屯的技术[J].水产养殖,1992,4:9.11.
  • 4亚丁.日本养殖红鳍东方鲍产量[J].现代渔业信息,2011,21(1):35-38.
  • 5陈超,于宏,孙曙光,等.红鳍东方缶屯的纯种引进[EB/OL].http://www.cafs.ac.cn/new.asp, 2004-06-04.
  • 6第一食品网.出口受阻,企业呼吁放松国内“河伍屯禁食令”[EB/OL].http://www,foodsl.com/content/782240/,2009-06-13.
  • 7李明德.红鳍东方鲑的胚胎发育[J].海洋通报,1987,6(1):38-41.
  • 8Hjort J. Fluctuations in the great fisheries of Northern Europe [J]. Rapp P-v Reun Cons IntExplorMer, 1914, 20: 1-13.
  • 9Braum E. Ecological aspects of the survival of fish eggs, embryos and larvae.Ecology of freshwater fish production [M]. London, uk : Blackwell Scientific Pu- blications, 1978: 102-126.
  • 10Jobling M. Fish Bioenergetics[M]. London, U K: Chapman & Hall, 1994, 209: 132-143.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部