期刊文献+

5元n立方体中指定三条点不交覆盖路

Specifying Three Disjoint Paths Covers in 5-ary n Cube
下载PDF
导出
摘要 k元n立方体被视为将来候选网络结构之一,它有很多优良性质和参数,被用作度量路由选择,能直接影响网络通信的稳定性和传输时效.本文研究了5元n立方体中一对三条点不交覆盖路问题,运用数学归纳法可得,当n≥2时,在Q_(n)^(5)中任意取四个顶点x,y_(1),y_(2),y_(3),则在Q_(n)^(5)中存在三条内部顶点不交的覆盖路P1=(x,…,y_(1)),P2=(x,…,y_(2)),P3=(x,…,y_(3)). k-ary n cube is regarded as one of the candidate network structures in the future.It has many excellent properties and parameters,which can be used to measure routing,and can directly affect the stability and transmission efficiency of network communication.In this paper,the problem of one to three disjoint coverage paths in 5-ary n cube.The following results are obtained by using mathematical induction:let Q_(n)^(5) be the 5-ary n cube,where n≥2,assume that x,y 1,y_(2),y_(3)be pairwise distinct vertices of Q_(n)^(5).Then Q_(n)^(5) can be found three vertex-disjoint covering paths P 1=(x,…,y_(1)),P 2=(x,…,y_(2)),P 3=(x,…,y_(3)).
作者 佘卫强 SHE Wei-qiang(College of General Education,Zhangzhou Institute of Technology,Zhangzhou 363000,China)
出处 《长春师范大学学报》 2023年第6期1-5,共5页 Journal of Changchun Normal University
基金 国家自然科学基金项目“Lagrange网络实用同步的不连续控制研究”(61603174) 福建省自然科学基金项目“机械臂网络任务空间同步的不连续控制”(2020J01793)。
关键词 5元n立方体 点不交路 覆盖 拓扑网络 5-ary n cube vertex-disjoint path covers network topology
  • 相关文献

参考文献6

二级参考文献35

  • 1BONDY J A, MURTY U S R. Graph Theory with Applications [ M ]. New York:The Macmillan Press Ltd, 1976.
  • 2LIN SHANGWE, WANG SHIYING, LI CHUNFANG. Panconnectivity and edge-pancyclicity of k-ary n-cubes with faulty ele- ments [ J ]. Discrete Applied Mathematics,2011,159 (4) : 212-212.
  • 3LI JING, WANG SHIYING, LIU DI, LIN SHANGWEI. Edge-bipancyclicity of the k-ary n-cubes with faulty nodes and edges [ J ]. Information Science ,2011,181 ( 11 ) :2260-2260.
  • 4HSIEH S Y, LINT J, HUANG H L. Panconnectivity and edge-pancyclicity of 3-Ary n-cubes [ J ]. Supercomput, 2007,42 : 225 -233.
  • 5HSIEH S Y, SHEN T H. Edge-bipancyclicity of a hypereube with faulty nodes and edges [ J ]. Discrete Appl Math, 2008,156: 1802-1808.
  • 6TSAI C H, LAI Y C. Conditional edge-fauh-tolerant edge-bipaneyclieity of hypercubes [ J ]. Information Sciences, 2007,177 : 5590-5597.
  • 7HSIEH S Y, LIN T J, HUANG H L. Panconnectivity and edge-pancyclicity of 3-ary n-cubes [ J ]. Journal of Supercomputing, 2007,42(2) :225-233.
  • 8Sun-Yuan Hsieh,Tsong-Jie Lin,Hui-Ling Huang.Panconnectivity and edge-pancyclicity of 3-ary N-cubes[J].The Journal of Supercomputing.2007(2)
  • 9Hong-Chun Hsu,Pao-Lien Lai,Chang-Hsiung Tsai.Geodesic pancyclicity and balanced pancyclicity of Augmented cubes[J].Information Processing Letters.2006(6)
  • 10Ming-Chien Yang,Jimmy J.M. Tan,Lih-Hsing Hsu.Hamiltonian circuit and linear array embeddings in faulty k -ary n -cubes[J].Journal of Parallel and Distributed Computing.2005(4)

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部