期刊文献+

地铁站场景下的可行驶区域检测

Drivable Area Detection in Subway Station Scenario
下载PDF
导出
摘要 在室内环境下的机器人视觉导航任务中,可行驶区域检测是不可或缺的一部分,这是保证自动驾驶任务实现的基础.目前较多的解决方法是对数据集中出现过的障碍物进行识别来检测可行驶区域,缺乏灵活性,因此本文提出了一种针对地铁站等室内平坦地面的可行驶区域检测方法,提高实用性.本文采用经典的MobileNetV3网络对采集到的前方图像进行分类,判断是否为地面区域.由于室内地面的地标、箭头等贴纸的影响,因此需要对非地面区域进一步判断,与常规的立体障碍物进行区分.本文利用连续帧之间的特征点匹配获得相机移动距离,并利用直线拟合计算斜率的方法达到区分立体障碍物与平面地标的目的.实验表明,本文提出的方法能较好地检测机器人前方可行驶区域,具有较高的实用价值. In the robot visual navigation task of the indoor environment,the detection of the drivable area is an indispensable part,which is the basis for ensuring the realization of the autonomous driving task.At present,many solutions are to detect the drivable area by identifying obstacles in the dataset,which lacks flexibility.Therefore,a drivable area detection method for indoor flat ground such as subway stations is proposed in this study to improve practicability.The classic MobileNetV3 network is applied to classify the collected front images and determine whether they are ground areas.Due to the influences of stickers such as landmarks and arrows on the indoor floor,it is necessary to further judge the non-ground area and distinguish it from conventional three-dimensional obstacles.In this study,the feature point matching between successive frames is adopted to obtain the camera moving distance,and the method of calculating the slope by straight line fitting is used to distinguish between three-dimensional obstacles and plane landmarks.Experiments show that the proposed method can better detect the drivable area in front of the robot and has high practical value.
作者 王思功 朱明 WANG Si-Gong;ZHU Ming(School of Information Science and Technology,University of Science and Technology of China,Hefei 230026,China)
出处 《计算机系统应用》 2023年第7期211-218,共8页 Computer Systems & Applications
基金 科技创新特区计划(20-163-14-LZ-001-004-01)。
关键词 可行驶区域检测 特征点匹配 分类网络 drivable area detection feature point matching classification network
  • 相关文献

参考文献5

二级参考文献57

  • 1Liuyuan Deng,Ming Yang,Zhidong Liang,Yuesheng He,Chunxiang Wang.Fusing Geometrical and Visual Information via Superpoints for the Semantic Segmentation of 3D Road Scenes[J].Tsinghua Science and Technology,2020,25(4):498-507. 被引量:7
  • 2周继苗,李必军,陈世增.一种多层特征融合的道路场景实时分割方法[J].测绘通报,2020(1):10-15. 被引量:8
  • 3Haselhoff A, Kummert A, Davis. A vehicle detection system based on Haar and triangle features[ A]. IEEE Intelligent Vehicles Symposium[ C]. Xi' an: IEEE, 2009.261 - 266.
  • 4Margfit B, Esin H, Larry S. Real-lime multiple vehicle detection and tracking from a moving vehicle[J].Machine Vision and Applications, 2000,12 (2) : 69 - 83.
  • 5Sun Z, Bebis G, Ronald M. Monocular pre-crash vehicle detection features[ J]. IEEE Transactions on Image processing, 2006, 15(7) :2019- 2033.
  • 6Ludwig O, Delgado D, Goncalves V, Nunes U. Trainable classi- tier-fusion schemes: An application to pedestrian detection [A ]. IEEE Conference on Intelligent Transportation Systems [C]. St. Louis, MO: IEEE,2009.1 - 6.
  • 7Lin Z,Davis L. Shape-based human detection and segmentation via hierarchical part-template matching[ J]. Pattern Analysis and Machine Intelligence, 2010,32(4) :604 - 618.
  • 8Qifa Ke, Takeo Kanade. Transforming camera geometry to a virtual downward-looking camera robust ego-motion estimation and ground-layer detection[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, 1 (1):390-397.
  • 9Boyoon Jung, Gaurav S. Sukhatme. Detecting moving objects using a single camera on a mobile robot in an outdoor environment[A]. The 8th Conference on Intelligent Autonomous Sys- tems[C]. Amsterdam, Netherlands: IEEE, 2004.980 - 987.
  • 10Wybo S,Bendahan R,Bougnoux S, Vestri C,Abad F , Kakinami T. Movement detection for safer backward maneuver [ A ]. 13th World Congress on Intelligent Transport Systems [C]. Tokyo: IF.EE, 2006.453 - 459.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部