期刊文献+

基于图卷积神经网络的自注意力的融合节点分类框架

Fusion Node Classification Framework Based on Self-attention in Graph Convolutional Networks
下载PDF
导出
摘要 图神经网络因其强大的建模能力引起广泛关注,常常被用来解决图上的节点分类任务.现阶段常用的以图卷积神经网络(graph convolutional network,GCN)为内核的模型解决此类问题,但往往因为出现过拟合与过平滑而导致深层的节点嵌入表示效果并不好.因此,本文提出了一种基于GCN内核的结合残差连接与自注意力方法——GCNRN模型,以提升GCN的泛化能力.同时,为了整合更深入的信息,本文引入融合机制,采用模糊积分融合多个分类器,最终提高模型测试精度.为了验证所提出方法的优越性,本文采用ogbn-arxiv与常用的引文数据集进行了对比实验.GCNRN模型与多个以GCN为内核的现有模型相比,节点分类准确率平均提高了2%,且避免了传统的过拟合和过平滑现象.此外,实验结果表明,增加了基于模糊积分的融合模块的多分类器模型比传统融合方法具有更好的分类效果. Graph neural networks(GNNs)have attracted widespread attention due to their powerful modeling capabilities,and they are often used to solve node classification tasks on graphs.At this stage,the commonly used model with the graph convolutional network(GCN)as the core solves such problems.However,due to over-fitting and over-smoothing,the deep node embedding representation effect is not positive.Therefore,this study proposes a graph convolutional neural residual networks(GCNRN)model that combines residual connection and self-attention based on GCN kernel to improve the generalization ability of GCN.At the same time,in order to integrate more in-depth information,this study introduces a fusion mechanism,uses fuzzy integral to fuse multiple classifiers,and finally improves the model testing accuracy.In order to verify the superiority of the proposed method,this study uses ogbn-arxiv and commonly used citation datasets to conduct comparative experiments.Compared with many existing models with GCN as the core,the GCNRN model has an average improvement of node classification accuracy by 2%and avoids the traditional over-fitting and over-smoothing phenomena.In addition,the experimental results show that the multi-classifier model with the fusion module based on fuzzy integral has a better classification effect than the traditional fusion method.
作者 姜发健 王金凤 招奕钧 郑志燊 JIANG Fa-Jian;WANG Jin-Feng;ZHAO Yi-Jun;ZHENG Zhi-Shen(College of Mathematics and Informatics,South China Agricultural University,Guangzhou 510642,China;Guangzhou Key Laboratory of Intelligent Agriculture,Guangzhou 510642,China)
出处 《计算机系统应用》 2023年第7期251-260,共10页 Computer Systems & Applications
基金 智能农业广州重点实验室(201902010081) 广东省科技规划项目(2017A040406023) 广州市科技规划项目(201804010353)。
关键词 图卷积神经网络 残差连接 自注意力 模糊积分 模糊融合 graph convolutional networks(GCN) residual connection self-attention fuzzy integral fuzzy fusion
  • 相关文献

参考文献2

二级参考文献17

  • 1Zhan X S, Ning X B, Yin Y L, et al. An improved point pattern algorithm for fingerprint matching.Journal of Nanjing University (Nantural Sciences), 2003,39(4):491-498.
  • 2Tan T Z, Ning X B, Yin Y L, et al. Arithmetic for singularity detection based on multilevel block sizes and shifting in fingerprint images. Journal of Nanjing University (Natural Sciences), 2003,39(4):460-467.
  • 3Tan T Z, Ning X B, Yin L Y, et al. A Fingerprint matching algotithrn based on certer point of the finger-pint. Journal of Nanjing University (Natural Sciences), 2003,39 (4) : 483 - 490.
  • 4Feng X K, Li L Y, Yah Z Q. A new fingerprint thinning algorithm. Journal of Images and Graphics,1999, 4A(10): 835--838.
  • 5Yu S S, Tsai W H. A new thinning algorithm for gray-scale images by the relaxation technique. Pattern Recognition, 1990, 23(10): 1 067--1 076.
  • 6Datta A, Parui S K. A robust parallel thinning algorithm for binary images. Pattern Recognition, 1994,27(9): 1 181--1 192.
  • 7Lawrence O G. K × K thinning. Computer Vision, Graphics and Image Processing, 1990, 51: 195--215.
  • 8Yin Y L, Ning X B, Zhang X M. Development and application of automatic fingerprint identification technology. Journal of Nanjing University (Natural Sciences), 2002, 38(1) : 29--35.
  • 9Zhan X S, Ning X B, Yin Y L, et al. The algorithm for distilling fingerprint orientation in the multi-letel bfock size. Journal of Nanjing University (Natural Sciences), 2003, 39(4) :476--482.
  • 10张春霞,张讲社.选择性集成学习算法综述[J].计算机学报,2011,34(8):1399-1410. 被引量:139

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部