期刊文献+

基于流特征的数据中心非对称流负载均衡方法 被引量:1

Asymmetric Flow Load Balancing Method Based on Flow Characteristics in Data Center Network
下载PDF
导出
摘要 数据中心边界广泛部署的地址转换技术产生的非对称流为负载均衡系统的设计带来了挑战.为了解决软件负载均衡系统不能充分发挥多核处理器和网卡硬件能力的问题,提出一种基于流特征的非对称流负载均衡方法.首先,分析网卡的数据包散列机制,提出数据包调度算法,将数据包调度至预期的CPU核;然后,基于会话报文序列的时间与空间特征,构建大象流识别算法;最后,基于识别结果,提出负载均衡方法.实验结果表明,非对称流负载均衡方法可以正确处理非对称流的负载均衡,平均吞吐率提升约14.5%. The asymmetric flow generated by the widely deployed address translation technology brings challenges to the design of load balancing system.To solve the problem of insufficient use of multi-core processors and network card hardware capabilities by software load balancers,an asymmetric flow load balancing method based on flow characteristics is proposed.Firstly,a data packet dispatching algorithm to dispatch packets into expected CPU core via hardware is proposed.Then,an elephant flow detection algorithm is constructed by analyzing of the temporal and spatial characteristics of packet sequences.Finally,based on detected results,a load balance offloading method is proposed.The experimental results show that,asymmetric flow load balancing method can correctly handle the asymmetric flow.Meanwhile,the average throughput rate increases by 14.5%.
作者 陈中卿 李丹丹 闪德胜 钱叶魁 谢坤 黄小红 丛群 CHEN Zhong-Qing;LI Dan-Dan;SHAN De-Sheng;QIAN Ye-Kui;XIE Kun;HUANG Xiao-Hong;CONG Qun(School of Computer Science(National Pilot Software Engineering School),Beijing University of Posts and Telecommunications,Beijing 100876,China;PLA 32147 Troops,Baoji 721000,China;PLA Army Academy of Artillery and Air Defense(Zhengzhou Campus),Zhengzhou 450052,China;R&D Department,Beijing WRD Technology Co.Ltd.,Beijing 100876,China)
出处 《软件学报》 EI CSCD 北大核心 2023年第8期3924-3937,共14页 Journal of Software
基金 国家重点研发计划(2019YFB1802600)。
关键词 流特征 负载均衡 硬件卸载 多核处理 网络地址转换 flow characteristics load balance hardware offloading multi-core processing network address translation
  • 相关文献

参考文献6

二级参考文献50

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2程光,龚俭,丁伟,徐加羚.面向IP流测量的哈希算法研究[J].软件学报,2005,16(5):652-658. 被引量:54
  • 3刘亚萍,龚正虎,朱培栋.BGP最优路径选择中的瓶颈区域的研究[J].软件学报,2005,16(5):946-959. 被引量:4
  • 4Chiang M L, Yang C Y, and Lien S L. Kernel support for fine-grained load balancing in a web cluster providing streaming service[CI. Lecture Notes in Computer Science Volume 7439/2012: Algorithms and Architectures for Parallel Processing - 12th International Conference, Fukuoka, Japan, 2012: 458-472.
  • 5Yang P J. Load balancing mechanism for QoS-aware cloud computing using eucalyptus platform[OL], http://140. 118.33.1/ETD-db/ETD-search/view etd?URN=etd-061211 1-175517, 2012.3.
  • 6Hu J H, Gu J H, SunGF, load balancing of virtual et al.. A scheduling strategy on machine resources in cloud computing environment[C], 3rd International Symposium on Parallel Architectures, Algorithms and Programming (PAAP 2010), Dalian, China, 2010: 89-96.
  • 7Torvalds L, et al.. The linux kernel archives[OL], http:// www.kernel.org/, 2012.4.
  • 8Cao Z, Wang Z, and Zegura E. Performance of hashing-based schemes for Internet load balancing[C]. Nineteenth Annual Joint Conference of the IEEE Computer and Conmmnications Societies(Proceedings IEEE INFOCOM 2000), Tel Aviv, Israel, 2000:332 -341.
  • 9Mansour Y, Nisan N, and Tiwari P. The computational complexity of universal hashing[C]. Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore. USA. 1990:235 -243.
  • 10Microsoft Corporation. Receive-side scaling enhancements in Windows Server 2008 lOLl. http://www.microsoft.com/ whdc/device/network/ndis_rss.mspx, 2012.8.

共引文献40

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部