期刊文献+

Insight into the influence of ether and ester electrolytes on the sodium-ion transportation kinetics for hard carbon 被引量:2

原文传递
导出
摘要 The electrochemical performance of hard carbon(HC)materials is closely related to the electrolyte used in the sodium ion batteries(SIBs).Conventional electrolytes carbonate(EC)demonstrates low initial Columbic efficiency(ICE)and poor rate performance,which is one of the main bottlenecks that limits the practical application of HCs.Ether electrolyte(diglyme)was reported to improve the rate performance of HCs.Nevertheless,the underlying mechanism for the excellent rate capability is still lack of in-depth study.In this work,the differences of sodium-ion diffusion between ether and carbonate-base electrolytes in HCs are analyzed layer by layer.Firstly,when sodium-ions are diffused in electrolyte,the diffusion coefficient of sodium-ion in ether electrolyte is about 2.5 times higher than that in ester electrolytes by molecular dynamics(MD)simulation and experimental characterization.Furthermore,when the solvated sodium-ions are diffused into the solid electrolyte interphase(SEI)interface and the HCs material,the enhanced charge transfer kinetics(thin SEI layer(4.6 vs.12 nm)and low RSEI(1.5 vs.24Ω))at the SEI combined with low desolvation energy(0.248 eV)are responsible for high-rate performance and good cycling stability of HC in ether electrolyte.Therefore,high diffusion coefficient,low desolvation energy,and good interface are the intrinsic reasons for enhanced rate performance in ether electrolyte,which also has guiding significance for the design of other high-rate electrolytes.
出处 《Nano Research》 SCIE EI CSCD 2023年第8期10922-10930,共9页 纳米研究(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.22179077,51774251,and 21908142) Shanghai Science and Technology Commission’s“2020 Science and Technology In-novation Action Plan”(No.20511104003) Natural Science Foundation in Shanghai(No.21ZR1424200).
  • 相关文献

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部