摘要
为克服人工读数存在的局限性问题,提高数字仪表读数效率,文章利用计算机视觉技术,自行构建样本数据库并训练卷积神经网络模型识别仪表数字。首先,采集仪表图像并对其进行预处理;其次,对预处理后的字符进行定位和切割;最后,引入训练过的网络模型对仪表数字进行分类识别。实验结果表明,该方法稳定性好、鲁棒性高、识别速度快,可以满足各类场景下的数字仪表读数需求。
In order to overcome the liminations of manual reading and improve the efficiency of unmanned digital meter reading,this paper uses computer vision technology to build a sample database and trains convolutional neural network model to identify meter numbers.Firstly,the instrument image is collected and preprocessed.Then,the preprocessed characters are located and segmented.Finally,the trained network model is introduced to classify and identify the meter numbers.Experimental results show that the method has good stability,high robustnes and fast recognition speed,which can meet the needs of digital instrument reading in various scenarios.
作者
岳志豪
赵明冬
周斌
马金辉
Yue Zhihao;Zhao Mingdong;Zhou Bin;Ma Jinhui(Zhengzhou University of Science and Technology,Zhengzhou 450064,China)
出处
《无线互联科技》
2023年第11期109-112,共4页
Wireless Internet Technology
基金
河南省教育厅2022年大学生创新创业训练计划项目,项目名称:基于计算机视觉的特殊场景仪表读数系统,项目编号:202212746003。
关键词
计算机视觉
数字识别
卷积神经网络
图像处理
定位切割
computer vision
digital recognition
convolutional neural network
image processing
positioning and cutting