期刊文献+

Deep active sampling with self-supervised learning

原文传递
导出
摘要 1 Introduction.Recently,some research efforts[1]have tried to combine selfsupervised learning and active learning to reduce the cost of labeling samples.However,this method is difficult to effectively improve the model performance because it does not consider the feature representation performance of the examples on the pretext task.In order to overcome this shortcoming,we propose a deep active sampling framework with self-supervised representation learning.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第4期221-223,共3页 中国计算机科学前沿(英文版)
关键词 tried LEARNING OVERCOME
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部