期刊文献+

Augmenting Trigger Semantics to Improve Event Coreference Resolution

原文传递
导出
摘要 Due to the small size of the annotated corpora and the sparsity of the event trigger words, the event coreference resolver cannot capture enough event semantics, especially the trigger semantics, to identify coreferential event mentions. To address the above issues, this paper proposes a trigger semantics augmentation mechanism to boost event coreference resolution. First, this mechanism performs a trigger-oriented masking strategy to pre-train a BERT (Bidirectional Encoder Representations from Transformers)-based encoder (Trigger-BERT), which is fine-tuned on a large-scale unlabeled dataset Gigaword. Second, it combines the event semantic relations from the Trigger-BERT encoder with the event interactions from the soft-attention mechanism to resolve event coreference. Experimental results on both the KBP2016 and KBP2017 datasets show that our proposed model outperforms several state-of-the-art baselines.
作者 宦敏 徐昇 李培峰 Min Huan;Sheng Xu;Pei-Feng Li(School of Computer Science and Technology,Soochow University,Suzhou 215000,China)
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第3期600-611,共12页 计算机科学技术学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.61836007 and 61772354.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部