期刊文献+

煤矿工作面需风量预测及通风机智能调速控制 被引量:1

Prediction of Air Demand at Coal Mine Working Face and Intelligent Speed Control of Ventilation Fan
下载PDF
导出
摘要 为进一步提升工作面的生产安全性和生产效率,保证工作面需风量与供风量的实时匹配性控制具有重要意义。以FBCDNO.7.5通风机为研究对象,在对其基本结构参数和工况分析的基础上,基于GA算法对神经网络模型不断迭代实现对需风量的精准预测;以PID控制器和T-S神经网络控制模型为核心构建通风机智能调速控制系统,并实现对通风机运行状态的精准控制,最终达到了通风机供风量与需风量相互匹配的目的。 In order to further improve the safety and productivity of the working face,it is important to ensure the real-time matching control of the air demand and supply of the working face.Taking the local ventilation fan as an example,based on the analysis of its basic structural parameters and working conditions,the GA algorithm is used to iterate the neural network model to achieve accurate prediction of air demand;the PID controller and the T-S neural network control model are used as the core to build the intelligent speed control system for the ventilation fan,and to achieve accurate control of the operation status of the ventilation fan,finally achieving the purpose of matching the air supply and air demand of the ventilation fan.The purpose is to match the air supply and air demand of the ventilation fan.
作者 石永宽 Shi Yongkuan(Xishan Coal Power Ximing Mine,Taiyuan Shanxi 030052,China)
机构地区 西山煤电西铭矿
出处 《机械管理开发》 2023年第7期239-240,245,共3页 Mechanical Management and Development
关键词 通风机 需风量 神经网络模型 T-S算法 PID控制 ventilation fan air demand neural network model T-S algorithm PID control
  • 相关文献

参考文献4

二级参考文献27

共引文献37

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部