期刊文献+

基于SIEM系统的APT攻击检测框架 被引量:2

APT attack detection framework based on SIEM system
下载PDF
导出
摘要 针对高级持续性威胁(advanced persistent threat,APT)攻击具有潜伏期长、隐蔽性高、针对性强、持续时间长的特点,提出了基于安全信息和事件管理(security information and event management,SIEM)系统的APT攻击检测框架.框架分为网络边界日志分析和内部网络流量分析两大模块,网络边界日志分析模块采用大数据分析技术,实时对各类安全防护设备产生的海量异构安全日志和流量统一整合关联、采用特征码检测技术构建第一层恶意代码检测,在网络边界或主机边界形成对APT攻击的第一道防线;内部网络流量分析模块采用大数据分析技术对内部网络流量进行过滤、与边界日志分析模块联动、结合基于图编辑距离的静态同源分类技术构建第二层恶意代码检测,重点防御C&C加密信道、0day漏洞、变形木马.通过网络取证分析实现了全流量回溯技术发现异常、布隆算法过滤入侵行为、虚拟执行分析技术还原APT攻击事件,以此形成内部网络APT攻击防线. According to APT attack,which has the characteristics of long latency,high concealment,strong pertinence and long duration,a detection framework of APT attack based on SIEM system is proposed.The framework is divided into two modules:network boundary log analysis module and internal network traffic analysis module.The network boundary log analysis module uses big data analysis technology to integrate and correlate the massive heterogeneous security logs and traffic generated by various security protection devices in real time,and uses signature detection technology to build the first layer of malicious code monitoring,forming the first line of defense against APT attacks at the network boundary or host boundary;The internal network traffic analysis module uses big data analysis technology to filter the internal network traffic,link with the boundary log analysis module,and combine the static homologous classification technology based on graph editing distance to build the second layer of malicious code detection,focusing on the defense of C&C encryption channels,0day vulnerabilities,and trojans.Through network forensics,we can realize full flow backtracking technology to find exceptions,Bloom algorithm filters intrusion behavior,and virtual execution analysis technology to restore APT attack events,so as to form an internal network APT attack defense line.
作者 谭振江 邬娜 郑月锋 TAN Zhen-jiang;WU Na;ZHENG Yue-feng(College of Mathematics and Computer Science,Jilin Normal University,Siping 136000,China)
出处 《吉林师范大学学报(自然科学版)》 2023年第3期118-123,共6页 Journal of Jilin Normal University:Natural Science Edition
基金 吉林省自然科学基金项目(20210101176JC) 吉林师范大学博士启动项目(吉师博2019019)。
关键词 APT攻击 SIEM系统 恶意代码检测 大数据分析 网络取证分析 APT attack SIEM system malicious code detection big data analysis Network forensics analysis
  • 相关文献

参考文献10

二级参考文献71

共引文献104

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部