期刊文献+

Enhanced unipolar electrical fatigue resistance and related mechanism in grain-oriented Pb(Mg_(1/3)Nb_(2/3))O_(3)-Pb(Zr,Ti)O_(3)piezoceramics

原文传递
导出
摘要 Piezoceramics with high and fatigue-resisted piezoelectric properties are strongly desired for actuator ap-plications.In this work,textured Pb(Mg_(1/3)Nb_(2/3))O_(3)-Pb(Zr,Ti)O_(3)ceramics with Lotgering factor F_(001)∼98%were fabricated by templated grain growth technique.Strong[001]c-grain orientation(f∼90%and r∼0.22)of the textured ceramics effectively produced about 230%enhanced piezoelectric coefficient d_(33)^(∗)(i.e.,S_(max)/E_(max))and substantially improved unipolar electrical fatigue resistance.Unipolar polarization P max and d_(33)^(∗)of the textured ceramics were nearly maintained up to 106 unipolar cycles,while 19%and 14%degradations were respectively observed from randomly oriented counterparts.Especially,normal-ized d_(33)^(∗)of the textured ceramics shows better unipolar fatigue resistance than those of piezoceramics reported previously.Much lower bipolar strain asymmetryγs(∼4%)was observed from the textured samples fatigued after 106 unipolar cycles as compared toγs∼23%for randomly oriented counterparts.While charged defect accumulation model described the serious fatigue deteriorations in randomly ori-ented ceramics,the current work revealed that substantially enhanced unipolar fatigue resistance of the textured ceramics is mainly associated with the inherent fatigue anisotropy,weakened local bias fields owing to both enhanced domain mobility and lower defect density near grain boundaries/interfaces,and increased intrinsic contribution due to more tetragonal content.These superior characteristics suggest the great potential of textured ceramics for high-performance and robust actuator applications.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第14期40-47,共8页 材料科学技术(英文版)
基金 This work was financially supported by the National Natural Science Foundation of China(Nos.52072092 and 51922083) the Natural Science Foundation of Heilongjiang Province(No.YQ2019E026) the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2021018).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部