摘要
针对传统PID控制算法难以解决磁悬浮系统非线性的问题,设计一种BP神经网络PID控制算法。通过仿真分析与试验研究,比较普通PID控制算法与BP神经网络PID控制算法对磁悬浮系统的实际控制效果。研究结果表明:BP神经网络PID控制算法可以改善磁悬浮系统的静动态性能,并使系统具有自学习、自适应的能力。
To overcome the difficulty in solving the problem of nonlinearity of magnetic levitation system by the traditional PID control algorithm,a BP neural network PID control algorithm is designed.Through simulation analysis and experimental research,the actual control effect of the ordinary PID control algorithm and the BP neural network PID control algorithm on the maglev system are compared.The research results show that the BP neural network PID control algorithm can improve the static and dynamic performance of the maglev system and enables the system to have self-learning and self-adaptive abilities.
作者
王一建
谢振宇
张鹏
王男
WANG Yijian;XIE Zhenyu;ZHANG Peng;WANG Nan(National Key Laboratory of Science and Technology on Helicopter Transmission,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《机械制造与自动化》
2023年第4期177-180,213,共5页
Machine Building & Automation
关键词
磁轴承
BP神经网络
静动态性能
magnetic bearing
BP neural network
static and dynamic performance