摘要
为提高电力在线技术监督平台的电力信号故障识别率和正判率,设计了一种基于数据挖掘的电力在线技术监督平台。通过对平台的硬件和软件进行设计,使用数据挖掘技术对预处理后的电力信号数据加以分析,完成数据组划分工作。根据关联规则以及历史数据特征,判断并输出数据组相应结果。测试结果表明:设计平台的故障数据识别率和正判率较高,达到了预期的要求,平台性能出众,应用效果好。
In order to improve the power signal fault recognition rate and positive judgment rate of the power online technical supervision platform,a power online technical supervision platform based on data mining was designed.By designing the hardware and software of the platform,the data mining technology was used to analyze the preprocessed power signal data,and the data group division was completed.According to the association rules and historical data characteristics,the corresponding results of the data group were judged and output.The test results show that the fault data recognition rate and positive judgment rate of the designed platform are high,which meets the expected requirements.It can be seen that the platform has outstanding performance and good application effect.
作者
郝金鹏
吴波
马云龙
杨凯
房子祎
Hao Jinpeng;Wu Bo;Ma Yunlong;Yang Kai;Fang Ziyi(Electric Power Research Institute,State Grid Ningxia Electric Power Co.,Ltd.,Yinchuan Ningxia 750001,China)
出处
《电气自动化》
2023年第4期20-22,共3页
Electrical Automation
基金
国网甘肃省电力公司科技攻关项目(203399494)。
关键词
数据挖掘
技术监督
电力信号
识别率
正判率
data mining
technical supervision
electric power signal
recognition rate
positive judgment rate