摘要
为了精准辨识振荡信号模态参数,提升次同步振荡动态监测效果,研究了时域变换下的变电站二次系统次同步振荡动态监测技术。利用同步挤压小波变换方法,正变换处理时延补偿后的振荡信号,获取振荡信号的同步挤压小波变换时域谱;将模态参数作为样本集,输入概率神经网络,输出次同步振荡动态监测结果。试验结果表明:可有效提取模态分量,并精准重构振荡信号;模态参数辨识结果与理论值相差较小,具备较优的参数辨识效果;在理想信号与含噪信号情况下,均可精准动态监测次同步振荡状态,保证次同步振荡动态监测过程的有效性。为该领域的相关研究提供参考。
In order to accurately identify the modal parameters of the oscillating signal and improve the dynamic monitoring effect of the subsynchronous oscillation,the dynamic monitoring technology of the subsynchronous oscillation of the secondary system of the substation under the time domain transformation was studied.Using the synchronous squeezing wavelet transform method,the oscillating signal after time delay compensation was processed by positive transformation,and the synchronous squeezing wavelet transform time-domain spectrum of the oscillating signal was obtained;the modal parameters were used as the sample set,input into the probability neural network,and output with the subsynchronous oscillation dynamic monitoring results.The test results show that the modal components can be effectively extracted and the oscillation signal can be accurately reconstructed;the difference between the modal parameter identification results and the theoretical values is small,and the parameter identification effect is better;in the case of ideal signals and noisy signals,the technology can accurately and dynamically monitor the subsynchronous oscillation state,to ensure the effectiveness of the dynamic monitoring process of subsynchronous oscillation.It can provide reference value for related research in this field.
作者
程诺
佘丽贞
Cheng Nuo;Se Lizhen(Economic Research Institute,State Grid Fujian Power Co.,Ltd.,Fuzhou Fujian 350001,China)
出处
《电气自动化》
2023年第4期26-29,共4页
Electrical Automation
基金
福建省自然科学基金杰青项目“基于电力电子信号技术的配网接地故障自愈能力提升研究”(2021J06038)。
关键词
时域变换
变电站
二次系统
次同步振荡
动态监测
time domain transformation
substation
secondary system
subsynchronous oscillation
dynamic monitoring