期刊文献+

在线广告点击率预测方法的研究综述

A Review of Click-Through Rate Prediction Approaches for Online Advertising
下载PDF
导出
摘要 在在线广告和推荐系统中,准确预测点击率(Click-Through Rate,CTR)是至关重要的。CTR是广告被点击次数与广告被展示次数的比值。过去,许多传统的机器学习算法,如逻辑回归、支持向量机,因为简单且易于实现而被广泛地应用于广告点击率预测工作。然而,这些传统算法往往需要复杂的特征工程。相较之下,深度学习模型能够有效自动提取高阶特征,可以较好地解决这一问题。此外,为了实现更高效、更准确的性能,融合了嵌入式和钦层感知器(Multilayer Perceptron,MLP)的优点的混合架构近年来被广泛地应用。该文对预测点击率的方法进行了全面的研究,不仅根据现有解决方案的架构将其分为三类,而且对每一类进行了详细的概述。最后,该文指出了该领域存在的挑战和未来发展方向,为进一步研究指明可能的途径。 In online advertising and recommender systems,it is critical to accurately estimate the click-through rate(CTR),a ratio of the number of clicks to the number of impressions.Many machine learning algorithms such as lo-gistic regression,SVM,etc.,are adopted to this task,which are all featured by the focus on feature engineering.Deep learning models that can effectively extract the high-order features automatically havea instinctive advantage in such work.To achieve more efficient and accurate performance,the hybrid architecture combining the embedding and MLP is more popular recently.This paper conduct a conscientious investigation into the approaches of estimating the click-through rate(CTR).Besides,we not only classify the existing solutions into three categories based on their architectures but also give a detailed overview of each category.We further present a comprehensive comparison of these state-of-the-art approaches.Finally,we summarize several open challenges and future directions in this field,which perhaps shed light on further studies.
作者 龚雪鸾 陈艳姣 王帅 GONG Xueluan;CHEN Yanjiao;WANG Shuai(School of Computer Science,Wuhan University,Wuhuan,Hubei 430070,China;College of Electrical Engineering,Zhejiang University,Hangzhou,Zhejiang 310058,China)
出处 《中文信息学报》 CSCD 北大核心 2023年第4期1-17,共17页 Journal of Chinese Information Processing
关键词 点击率预测 陈列式广告 机器学习 Click-Through rate prediction display advertisement machine learning
  • 相关文献

参考文献3

二级参考文献50

  • 1BRODER A,JOSIFOVSKI V.Introduction to Computational Advertising[M/OL]//The Course of Computation Advertising,Stanford University.2011[2013-03-2l].http://www.stanford.edu/class/msande239.
  • 2GABRILOVICH E.An Overview of Computational Advertising[R/OL].Yahoo Research.2008[2013-03-21]. http://research.yahoo.com/pub/2915.
  • 3AGARWAL D,CHAKRABARTI D.Statistical Challenges in Online Advertising[R/OL].Yahoo Research. 2008[2013-03-21].http://research.yahoo.com/ pub/2430.
  • 4GRAEPEL T,BORCHERT T,HERBRICH R,et al.Probabilistic Machine Learning in Computational Advertising [R/OL].Microsoft Research,2009[2013-03-2l].http://research,microsoft.com/en-us/um/beijing/events/ mload-2010.
  • 5DID-IT,ENQUIRO,EYETOOLS.Eye Tracking Study[R/OL].2007[2013-03-21].http://www.enquire. com/ eye-tracking-pr.asp.
  • 6AGICHTEIN E,BRILL E,DUMAIS S.Improving web search ranking by incorporating user behavior information [C]//Proc 29th SIGIR,2006:19-26.
  • 7JOACHIMS T.Optimizing search engines using clickthrough data[C]//Proc KDD,2002.
  • 8JOACHIMS T,GRANKA L,PAN B,et al.Accurately interpreting clickthrough data as implicit feedback[C]// Proc SIGIR,2005.
  • 9GRANKA L A,JOACHIMS T,GAY G.Eye-tracking analysis of user behavior in www search[C]//Proc SIGIR' 04,2004.
  • 10ZHANG V,JONES R.Comparing click logs and editorial labels for training query rewriting[C]//Query Log Analysis: Social And Technological Challenges.Banff:WWW07,2007.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部