摘要
通过市场的导向作用,形成不同关联市场之间的合力,促成能源的清洁低碳转型是亟待解决的重要问题。针对当前电–碳–绿证联合市场方面的研究未针对市场参与主体构建可供量化分析的动力学模型,以及求解算法的智能性仍需进一步挖掘等问题,提出了计及需求灵活性的地区绿色证书、碳排放权及电力联合交易分析方法。首先,构建了地区绿色证书、碳排放权及电力的联合交易框架;其次,结合系统动力学理论对传统火电厂商、可再生能源发电厂商以及电力用户负荷聚合商等市场参与主体进行建模;在此基础上,采用深度分布式强化学习算法对模型问题进行求解;最后,通过实际算例仿真分析验证所提理论方法的有效性,并对联合交易中的关键影响因素进行灵敏性分析。
It is an important issue to be addressed that the different connected markets should create synergies in between to enable the clean and low-carbon energy transition through market orientation.To solve the problems that the current researches on the joint market of electricity,carbon and green power certificates have not built an analytical dynamics model for the market participants and the intelligence of the solution algorithms still needs to be further explored,a method is proposed to analyze the joint trading of the local green certificates,the carbon emissions and the electricity,taking into account the demand flexibility.Firstly,a joint trading framework of the local green power certificates,the carbon emissions and the electricity is constructed.Secondly,the market participants,such as the traditional thermal power plants,th erenewable energy power plants and the power user load aggregators,are modeled based on the system dynamics theory.On this basis,a deep distributed reinforcement learning algorithm is used to solve the problem.Finally,the effectiveness of the theoretical method proposed in this paper is verified through the actual simulation analysis,and the sensitivity of the key influencing factors in joint trading is also analyzed.
作者
李吉峰
邹楠
李卫东
吴俊
张明泽
LI Jifeng;ZOU Nan;LI Weidong;WU Jun;ZHANG Mingze(Dalian Electric Power Supply Company,State Grid Liaoning Electric Power Supply Co.,Ltd.,Dalian 116001,Liaoning Province,China;School of Electrical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China)
出处
《电网技术》
EI
CSCD
北大核心
2023年第8期3164-3173,共10页
Power System Technology
关键词
电力市场
绿色证书交易市场
碳排放权交易市场
需求灵活性
深度分布式强化学习
electricity market
green power certificate market
carbon emission market
demand flexibility
deep distributed reinforcement learning