期刊文献+

基于自然驾驶数据的跟车危险场景构建 被引量:1

Construction of Car Following Critical Scenarios based on Natural Driving Data
原文传递
导出
摘要 为了切实提高自动驾驶测试效率,本文提出了一种跟车危险场景构建方法。首先基于自然驾驶数据,提取最常见的跟车场景,挖掘前车动力学特征并使用高斯混合模型拟合前车加速度分布,提取边缘加速度;然后结合快速搜索随机树搜索边缘加速度,随机控制前车行为,生成跟车危险场景测试用例;最后,基于仿真云平台进行并行仿真测试。结果表明,提出的跟车危险场景构建方法能够提高危险场景出现概率,极大提升了功能算法的仿真测试效率。 To improve the test efficiency of autonomous vehicles significantly,this article proposes a method for constructing critical car-following scenarios.Firstly,based on the natural driving data,the most common car-following scenarios are extracted,the dynamic characteristics of the front car are mined,and the acceleration distribution of the front car is fitted using the Gaussian Mixture Model(GMM)to extract the edge acceleration.Then,searching the edge acceleration by combining with Rapidly-exploding Random Tree(RRT),which conducts stochastic control of the front car behavior and generates the test case of the car-following critical scenarios.Finally,parallel simulation testing is conducted based on the simulation cloud platform.The results indicate that the method proposed in this article for constructing car-following critical scenarios can effectively improve the probability of critical scenarios occurring.It increases the simulation testing efficiency of functional algorithms greatly.
作者 魏鹏 袁梦 Wei Peng;Yuan Meng(National Innovation Center of Intelligent and Connected Vehicles,Beijing 100176)
出处 《中国汽车》 2023年第7期39-44,共6页 China Auto
关键词 自动驾驶汽车 仿真测试 测试场景 跟车场景 场景构建 autonomous vehicle virtual simulation test scenario car-following scenario scenario construction
  • 相关文献

参考文献5

二级参考文献47

  • 1夏候凯顺,陈善星,邬依林.基于双目云台相机的目标跟踪系统建模与仿真[J].系统仿真学报,2015,27(2):362-368. 被引量:6
  • 2刘玉梅,苏建,潘洪达,翟乃斌,杨秀坤.虚拟仪器技术在汽车性能测试中的应用[J].中国公路学报,2005,18(2):112-115. 被引量:20
  • 3王海涛.汽车道路强化腐蚀试验及评价方法[J].腐蚀与防护,2007,28(6):300-302. 被引量:16
  • 4Hameiri E, Shimshoni I. Estimation the principal curvatures and the Darboux frame from real 3-D range data[J].IEEE Transaction on Systems, Man, and Cybernetics, Part B, 2003, 33(4): 626-637.
  • 5Paul J B, Neil D M. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256.
  • 6Bentley J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517.
  • 7Friedman J H, Bentley J L, Finkel R A. An algorithm for finding best matches in logarithmic expected time[J]. ACM Transactions on Mathematical Software, 1977, 3(3): 209-226.
  • 8Sproull R F. Refinements to nearest-neighbor searching in k-dimensional trees[J]. Algorithmica, 1991, 6(4): 579-589.
  • 9Arya S, Mount D. M. Algorithms for fast vector quantization[C].// Proceedings of the IEEE Data Compression Conference. Snowbird: [s. n.].19931 381-390.
  • 10Vanco M, Brunnett G, Schreiber T. A hashing strategy for efficient k-nearest neighbors computation[C]//Proceedings of the International Conference on Computer Graphics. Canmore: [s. n.], 1999: 120- 128.

共引文献173

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部