期刊文献+

基于改进YOLOv5s的太阳能电池缺陷检测算法 被引量:3

Improved Solar Cell Defect Detection Algorithm Based on YOLOv5s
下载PDF
导出
摘要 太阳能电池生产制造的过程中,由于制造工艺的不完善和人为操作失误等原因可能导致太阳能电池片出现破损、裂缝、断栅和硅材料缺失等类型的缺陷。为了提高太阳能电池缺陷检测准确率,本文提出一种基于YOLOv5s算法的太阳能电池缺陷检测算法YOLOv5s-CG。在主干网络和特征融合层不同位置引入卷积注意力机制(CBAM),主干网络的注意力机制关注全局信息,特征融合层的注意力机制关注局部信息,同时在空间和通道2种维度上进行特征增强,并用GIOU损失函数评估检测效果。使用重新标注的公开太阳能电池数据集对提出的算法进行实验验证,实验结果表明,YOLOv5s-CG算法的全类平均精度(mAP)达到了75.1%,与YOLOv5s算法比较,各种类型的缺陷检测精度都有所提升,其中裂缝和硅材料缺失的精度分别提升了0.036、0.033,全类平均精度(mAP)提高了0.026;与主流的目标检测算法SSD相比,全类平均精度(mAP)提升了0.123。本文算法能够更加高效地检测太阳能电池的缺陷,为实际生产提供更好的检测算法。 In the process of manufacturing solar cells,due to the imperfect manufacturing processes and operational failure of hu⁃mans,the defects,such as broken cell,crack,finger failure and silicon material missing might be found in the solar cells.A so⁃lar cell defect detection model based on YOLOv5s,namely YOLOv5s_CG,is proposed to improve the precision of the solar cell defects detection.The algorithm introduces convolutional attention mechanism(CBAM)blocks in different positions of the back⁃bone network and feature fusion layer.The attention mechanism of the backbone network focuses on the global information,and the attention mechanism of the feature fusion layer focuses on the local information.At the same time,it enhances the features in both spatial and channel dimensions and uses the GIOU loss function to evaluate the detection effect of the algorithm.The pro⁃posed method is tested on the open source solar cell dataset which is re-labeled by the authors.The experimental results show that the overall mean average precision(mAP)of the YOLOv5s-CG algorithm reaches 75.1%.Compared with the algorithm of YOLOv5s,various types of defect detection accuracy have been improved,among which the accuracy of crack and silicon mate⁃rial missing has increased by 0.036 and 0.033 respectively,and the average accuracy(mAP)of all classes has increased by 0.026.Compared with the mainstream target detection algorithm of SSD,the overall mean average precision(mAP)has im⁃proved by 0.123.The algorithm can accurately detect the defects of solar cells,which could provide a better defects detection al⁃gorithm for real solar cell production.
作者 罗伟 刘思远 徐健祥 董天培 LUO Wei;LIU Si-yuan;XU Jian-xiang;DONG Tian-pei(School of Physics and Electronic Engineering,Northeast Petroleum University,Daqing 163318,China)
出处 《计算机与现代化》 2023年第7期119-126,共8页 Computer and Modernization
关键词 太阳能电池缺陷检测 目标检测 深度学习 YOLOv5 注意力机制 solar cell defect detection object detection deep learning YOLOv5 attention mechanism
  • 相关文献

参考文献11

二级参考文献98

  • 1朱明海,吴战宇,姜庆海,黄毅,周寿斌.锂电池在太阳能路灯中的应用[J].电池工业,2019,23(6):310-313. 被引量:9
  • 2Bengio Y. learning Deep Architectures for Al. Foundations andTrends in Machine Learning, 2009 , 2(1): 1-127.
  • 3Hinton G E,SaIakhut(Jinov R R. Reducing the Dimensionality ofData with Neural Networks. Science, 2006, 313(5786) : 504-507.
  • 4Bengio Y, Delalleau 0. On the Expressive Power of Deep Archilec-tures // Proc of the 22nd International Conference on Algorithmiclearning Theory. Ksp[M], Finland,2011: 18-36.
  • 5Yoshua B, l^eCun Y. Scaling Learning Algorithms towards Al.Cambridge,USA : MIT Press, 2007.
  • 6Dahl G E, Yu d, Deng L, el al. Context-Dependent Pre-trainedDeep Neural Networks for Large-Vocabulary Speech Recognition.IEEE Trans on Audio, Speech and Language Processing, 2012,20(1):30-42.
  • 7Hinton G,Deng L, Yu D, et al. Deep Neural Networks for AcousticModeling in Speech Recognition : The Shared Views of FourResearch Groups. IEEE Signal Processing Magazine, 2012, 29(6) : 82-97.
  • 8Sungjoon C, Kim E, Oh S. Human Behavior Prediction for SmartHomes Using Deep Learning // Proc of the 22nd IEEE InternationalSymposium on Robot and Human Interactive Communication. Gyeo-ngju, Republic of Korea, 2013 : 173-179.
  • 9林妙真.基于深度学习的人脸识别研究.硕士学位论文.大连:大连理工大学,2013.
  • 10Wang N Y, Yeung D. Learning a Deep Compact Image Represen-tation for Visual Tracking // Proc of the 27th Annual Conferenceon Neural Information Processing Systems. Lake Tahoe, USA,2013: 809-817.

共引文献252

同被引文献29

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部