摘要
小角X射线散射设备的不断升级和发展产生了更多更高维的散射数据,给研究人员快速获取实验结果带来了极大挑战。亟需有效的自动化分类方法,加快数据表征速度的同时保证较高的准确率。然而,许多模型学习特征主要针对光照图像,忽略了散射图像特点,分类准确率较低。因此,基于散射模式特点,提出了一种双模态细粒度特征提取模型BRTNet。该模型采用双模态输入模式,其一为采用多尺度卷积为架构的特征学习网络PRS,学习散射图像的微观信息;其二为融合局部信息的多头注意力机制ConvTransformer,学习散射序列的相关性信息。然后,模型结合图像信息和序列信息,融合双分支特征,对散射数据进行分类并获得分类结果。在生物溶液散射数据集上的实验结果表明,模型分类准确率超89%,同基准模型相比具有较为明显的优势。
The continuous upgrading and development of small-angle X-ray scattering(SAXS)equipment have generated more high-dimensional scattering data,which poses great challenges for researchers to quickly obtain experimental results.Researchers urgently need effective automated classification methods to speed up data representation and obtain higher accuracy.However,many models learn features mainly for illumination images,ignoring the characteristics of scattering images and resulting in lower classification accuracy.Therefore,based on the characteristics of scattering patterns,this paper proposes a bimodal fine-grained feature extraction model called BRTNet.The model adopts a bimodal input mode.The first mode is the feature learning network PRS using a multi-scale convolution architecture,which learns the micro-information of scattering images.The second mode is the multi-head attention mechanism ConvTransformer fusing local information,which learns the correlation information of scattering sequences.Then,the model combines image information and sequence information,fuses the dual-branch features,classifies the scattering data,and obtains the classification results.Experimental results on the biological solution scattering dataset show that the model's classification accuracy exceeds 89%,which has a significant advantage over the baseline model.
作者
谷文俊
张晟恺
邱晓梦
李亚康
宋伟
GU Wen-jun;ZHANG Sheng-kai;QIU Xiao-meng;LI Ya-kang;SONG Wei(Henan Academy of Big Data,Zhengzhou University,Zhengzhou 450052;School of Computer and Artificial Intelligence,Zhengzhou University,Zhengzhou 450001;Institute of Advanced Science Facilities,Shenzhen 518107;Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China)
出处
《计算机工程与科学》
CSCD
北大核心
2023年第8期1443-1452,共10页
Computer Engineering & Science
基金
国家自然科学基金(12005248)
河南省高等学校重点科研项目(22A520010)。
关键词
小角散射图像
细粒度分类
散射特征
双模态
small-angle scattering image
fine-grained classification
scattering features
bimodal