期刊文献+

SPH体积映射流固交互的稳定性及细节提升方法

Stability and Detail Improvement Method for SPH Volume Maps Fluid-Solid Interaction
下载PDF
导出
摘要 针对现有的光滑粒子流体动力学(SPH)流固交互方法中存在的稳定性以及流体细节表现不佳的问题,提出一种改进的体积映射流固交互方法.首先采用无散度SPH方法对流体进行建模,保证流体的不可压缩性;然后引入体积映射方法处理固体边界,以隐式函数的形式表示边界而无需使用粒子,解决粒子采样的固体表面不平滑的问题;再引入移动最小二乘法对固体边界上的压强进行插值,避免压强镜像带来的误差,提升体积映射方法中压强和压强梯度计算的精确性,提高系统的稳定性;最后引入粒子重采样方法进行流体表面细化,充分表现流体表面区域的不同粒子特征,增强流固交互后的流体细节,提高真实感.在斯坦福大学公开的基本三维模型上的实验结果表明,所提方法能够真实、稳定地表现不可压缩流体与固体的交互现象,处理多个静态或动态固体的复杂场景,并且能够有效地刻画流体细节. Aiming at the stability problems and the poor fluid details of the existing smoothed particle hy-drodynamics(SPH)fluid-solid interaction methods,an improved fluid-solid interaction method based on volume maps was proposed.Firstly,the divergence-free SPH method was used to model the fluid to enforce the incompressibility.Secondly,the volume maps method was introduced to handle the solid boundary,and the boundary was represented by implicit functions instead of particles to solve the problem of the bumpy solid surface with particle sampling method.Thirdly,Moving Least Squares was introduced to interpolate the pressure on the solid boundary to avoid the error caused by the pressure mirroring,which improved the accuracy of the pressure and pressure gradient in the volume maps,and improved the system stability.Fi-nally,the particle resampling method was introduced to refine the fluid surface to fully show the different particle characteristics of the fluid surface regions,which enhanced the fluid details after fluid-solid interac-tion and the reality.The experiments used the basic three-dimensional models provided by Stanford Univer-sity.The experimental results show that this method can truly and stably simulate the interaction of incom-pressible fluids and solids,handle complex scenes with multiple static or dynamic solids,and effectively represent fluid details.
作者 赵静 袁海鹏 许立群 安泳钢 唐川宁 吕梦雅 Zhao Jing;Yuan Haipeng;Xu Liqun;An Yonggang;Tang Chuanning;Lyu Mengya(The College of Information Science and Engineering,Yanshan University,Qinhuangdao 066004;The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province,Qinhuangdao 066004;State Key Laboratory of Software Engineering of Hebei Province,Qinhuangdao 066004)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第6期848-856,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61902340) 河北省自然科学基金(F2019203494) 河北省创新能力提升计划(22567626H).
关键词 流固交互 光滑粒子流体动力学 体积映射 移动最小二乘法 粒子重采样 fluid-solid interaction smoothed particle hydrodynamics volume maps moving least squares parti-cle resampling
  • 相关文献

参考文献2

二级参考文献24

  • 1谭捷,杨旭波.基于物理的流体动画综述[J].中国科学(F辑:信息科学),2009,39(5):499-514. 被引量:9
  • 2柳有权,刘学慧,朱红斌,吴恩华.基于物理的流体模拟动画综述[J].计算机辅助设计与图形学学报,2005,17(12):2581-2589. 被引量:59
  • 3Milller M, Schirm S, Teschner M, et at. Interaction of fluids with deformable solids [J]. Computer Animation and Virtual Worlds, 2004, 15(3/4): 159-171.
  • 4Harada T, Koshizuka S, Kawaguchi Y, Smoothed particle hydrodynamics on GPUs [C] //Proceedings of Computer Graphics International, Washington DCt IEEE Computer Society, 2007:63-70.
  • 5Yang L P, Li S, Hao A M, etal. Realtime two-way coupling of meshless fluids and nonlinear FEM [J], Computer Graphics Forum, 2012, 31(7): 2037-2046.
  • 6Becker M, Tessendorf H, Teschner M. Direct forcing for lagrangian rigid-fluid coupling [J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(3), 493-503.
  • 7Hu X Y, Adams N A. A multi-phase SPH method for macroscopic and mesoscopie flows [J]. Journal of Computational Physics, 2006, 213(2): 844-861.
  • 8Morris J P, Monaghan J J. A switch to reduce SPH viscosity [J]- Journal of Computational Physics, 1997, 136(1): 41-50.
  • 9Seheehter H, Bridson R. Ghost SPH for animating water [J]. ACM Transactions on Graphics, 2012, 31(4): Article No. 61.
  • 10Solenthaler B, Schlifli J, Pajarola R. A unified particle model for fluid-solid interactions [J]. Computer Animation and Virtual Worlds, 2007, 18(1) : 69-82.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部