期刊文献+

Effect of grain structure on fatigue crack propagation behavior of Al-Cu-Li alloys 被引量:3

原文传递
导出
摘要 Recrystallization behavior during optimized heat treatments provides a potential to obtain desirable grain structure,which significantly improves the mechanical properties of aluminum alloys.The influence of grain structures on fatigue crack propagation(FCP)behaviors of Al-Cu-Li alloy with hot-rolled(HR)and cold-rolled(CR)was investigated.Subgrain boundaries have a significant impact on small crack growth rates,which is reflected in the pronounced fluctuation of fatigue crack growth of HR specimens after solution treatment.Moreover,the specific cellular structure within grains can improve the deformation capacity of alloys due to their accommodation of plastic deformation,which contributes to the lower fatigue crack growth rates and higher threshold values in HR specimens.The intragranular deflection also decelerates the FCP rate and occurs in these regions of large grain without subgrain boundaries.Recrystallization occurs in the CR specimens,resulting in small anisotropy on the fatigue resistance for the different orientations in the Paris stage due to the recrystallization texture.Fatigue cracks can be deflected and tend to propagate along the grain boundaries when it goes into the grain with a relatively low Schmidt factor value.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第17期75-89,共15页 材料科学技术(英文版)
  • 相关文献

同被引文献39

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部