期刊文献+

基于E-YOLOX的实时金属表面缺陷检测算法 被引量:3

A real-time metallic surface defect detection algorithm based on E-YOLOX
下载PDF
导出
摘要 针对现有基于深度学习的金属表面缺陷检测方法存在泛化能力差、检测速度低等问题,提出一种新的检测算法E-YOLOX。该算法采用新的特征提取网络ECMNet,并使用深度卷积减少网络参数;以线性逆瓶颈残差网络提升特征提取能力,在正向传播过程中保留更多高维张量内的流形分布于低维子空间的关键特征;以扩张跨阶段局部网络结构多样化神经网络的梯度流路径,使深层神经网络更高效地学习和收敛。同时,提出一种新的数据增强方法边缘Cutout,在训练过程中自适应生成掩膜覆盖图像的随机区域,提升网络的检测和泛化能力。实验结果表明,E-YOLOX-l在铝型材表面缺陷数据集AL6-DET上检测精度达到了77.2%的mAP,在钢材表面缺陷数据集GC10上检测精度达到了36.8%的mAP,较基准模型YOLOX-l分别提高3.6%和1.7%,同时参数量减少55%,计算量减少49%,检测速度达到57 FPS,提高了21 FPS。与相关算法对比,该算法取得较高的检测精度,且在精度和速度之间达到较好的均衡。 For metallic surface defect detection,a novel algorithm E-YOLOX was proposed to address the shortcomings of current methods,such as poor generalization ability and low detection speed.The algorithm utilized a new feature extraction network,ECMNet,which employed depth convolutions to reduce the parameters and computational cost of the network.The linear inverse bottleneck residual network was in use to enhance the feature extraction capability,while preserving more key features that were manifold distributed in low-dimensional subspaces within high-dimensional tensors during forward propagation.Additionally,the extended cross-stage partial network structure diversified the gradient flow paths of neural networks,making deep neural networks learn and converge more efficiently.Moreover,a new data augmentation method edge Cutout was proposed,which generated adaptive masks covering random regions of the image during the training process,enhancing the detection and generalization ability of the network.The experimental results demonstrated that E-YOLOX-l achieved 77.2%mAP in detection accuracy on the aluminum profile surface defect dataset AL6-DET and 36.8%mAP on steel surface defect dataset GC10-DET,which was 3.6%and 1.7%higher than the baseline algorithm YOLOX-l.At the same time,the number of parameters was reduced by 55%and the computational cost was reduced by 49%.The detection speed was 57 FPS,an increase of 21 FPS.Compared with other related algorithms,the new algorithm achieved a higher detection accuracy and a better balance between accuracy and speed.
作者 曹义亲 周一纬 徐露 CAO Yi-qin;ZHOU Yi-wei;XU Lu(College of Software,East China Jiaotong University,Nanchang Jiangxi 330013,China;School of Electromechanical Engineering,Jiangxi V&T College of Communications,Nanchang Jiangxi 330013,China)
出处 《图学学报》 CSCD 北大核心 2023年第4期677-690,共14页 Journal of Graphics
基金 国家自然科学基金项目(62166012,62266015) 广西自然科学基金项目(2022GXNSFAA035644) 广西嵌入式技术与智能系统重点实验室主任基金项目(2020-1-8)。
关键词 金属表面 缺陷检测 深度学习 YOLOX 轻量级网络 数据增强 metallic surface defect detection deep learning YOLOX lightweight network data augmentation
  • 相关文献

参考文献5

二级参考文献35

  • 1Kim D,Liu J J, HAN Chong-hun. Determination of Steel QualityBased on Discriminating Textural Feature Selection [J]. Chemi-cal Engineering Science, 2011,66(23) : 6264.
  • 2CHANG Yu-qing, WANG Jin-fen, TAN Shuai,et al. QualityPrediction of Strip Steel Based on Windows-Mean MPLS [I].Journal of Iron and Steel Research, International, 2010, 17(7): 28.
  • 3ZHU Zhen-hua, Brilakis I. Machine Vision-Based Concrete SurfaceQuality Assessment [J]. Journal of Construction Engineering andManagement, 2010,136(2) : 210.
  • 4Gonzalez A, Garrido M A,Llorca D F, et al. Automatic Traf-fic Signs and Panels Inspection System Using Computer Vision[J]. IEEE Transactions on Intelligent Transportation Systems,2011, 12(2): 485.
  • 5Do Y, Lee S? Kim Y. Vision-Based Surface Defect Inspection ofMetal Balls [J]. Measurement Science and Technology, 2011,22(10): 1.
  • 6ZHANG Xue-wu, DING Yan-qiong, LVYan-yun,et al. A Vi-sion Inspection System for the Surface Defects of.Strongly. Re-flected Metal Based on Multi-Class SVM [J].. Expert SystemsWith Applications, 2011,38(5) : 5930.
  • 7Ceccarelli M,Speranza A, Grimaldi D,et al. Automatic Detec-tion and Surface Measurements of Micronucleus by a ComputerVision Approach [J]. IEEE Transactions on Instrumentationand Measurement, 2010,59(9) : 2383.
  • 8Yun J P, Choi S H, Kim J W? et al. Automatic Detection ofCracks in Raw Steel Block Using Gabor Filter Optimized by Un-ivariate Dynamic Encoding Algorithm for Searches (uDEAS)[J] , NDT and E International, 2009,42(5) : 389.
  • 9LIU Wei-wei, YAN Yun-hui,LI Jun, et al. Automated On-Line Fast Detection for Surface Defect of Steel Strip Based onMultivariate Discriminant Function [C] //2008 Second Interna-tional Symposium on Intelligent Information Technology Appli-cation. Shanghai: Inst of Elec and Elec Eng Computer Society,2008: 493.
  • 10Jeon Y J, Yun J P, Choi D C, et al. Defect Detection Algo-rithm for Corner Cracks in Steel Billet Using Discrete WaveletTransform [C] // ICROS-SICE International Joint Conference.Fukuoka: IEEE Computer Society, 2009: 2769.

共引文献61

同被引文献10

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部