期刊文献+

基于多尺度复合卷积和图像分割融合的车道线检测算法 被引量:2

Lane Line Detection Algorithm Based on Multi-Scale Composite Convolution and Image Segmentation Fusion
下载PDF
导出
摘要 在车道线检测任务中,由于车道线的特点和获取更大范围感受野的需求,空洞卷积被广泛使用.然而,为了获取大范围信息,空洞卷积会造成卷积点附近信息的丢失.针对以上问题,提出了一种基于多尺度复合卷积和图像分割融合的车道线检测算法.首先将不同尺寸的空洞卷积、全卷积和标准卷积结合以弥补空洞卷积造成的信息丢失;然后通过语义分割和实例分割融合的图像分割融合模块来增强实例分割网络对全局特征的关注;最后,设计一个加权交叉熵损失函数对网络进行训练和优化.实验结果表明,算法在CULane数据集中的整体F1measure取得74.9%,整体性能优于比较算法,在多种挑战性环境中均有所提升. In the task of lane line detection,atrous convolution is widely used due to the characteristics of lane lines and the need to obtain a wider receptive field.However,in order to obtain large-scale information,atrous convolution will cause the loss of information near the convolution point.To solve the problems,a lane line de-tection algorithm was proposed based on multi-scale composite convolution and image segmentation fusion.First,atrous convolution,full convolution and standard convolution of different sizes were combined to com-pensate for the loss of information caused by atrous convolution.And then,fusing semantic segmentation and in-stance segmentation,an image segmentation fusion module was arranged to enhance the attention of instance segmentation network to global features.Finally,a weighted cross-entropy loss function was designed to train and optimize the network.The experimental results show that the overall F1measure of the algorithm in the CULane dataset can achieves 74.9%.Comparing with other algorithms,the overall performance of the proposed detection algorithm is better and improved in various challenging environments.
作者 方遒 李伟林 梁卓凡 陈韬阳 FANG Qiu;LI Weilin;LIANG Zhuofan;CHEN Taoyang(Fujian Key Laboratory of Advanced Bus&Coach Design and Manufacture,Xiamen University of Technology,Xiamen,Fujian 361024,China;School of Aerospace Engineering,Xiamen University,Xiamen,Fujian 361005,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2023年第8期792-802,共11页 Transactions of Beijing Institute of Technology
基金 福建省自然科学基金资助项目(2022J011247)。
关键词 深度学习 实例分割 车道线检测 空洞卷积 deep learning instance segmentation lane line detection atrous convolution
  • 相关文献

参考文献9

二级参考文献43

  • 1赵明,郑泽宇,么庆丰,潘怡君,刘智.基于改进人工势场法的移动机器人路径规划方法[J].计算机应用研究,2020,37(S02):66-68. 被引量:32
  • 2金辉,吴乐林,陈慧岩,龚建伟.结构化道路车道线识别的一种改进算法[J].北京理工大学学报,2007,27(6):501-505. 被引量:28
  • 3Gechter F, Contet J M, Galland S, et al. Virtual in- telligent vehicle urban simulator: Application to vehi- cle platoon evaluation[J]. Simulation Modelling Prac- tice and Theory,2012,24(1) :103-114.
  • 4Yu Y, E1 Kamel A, Gong G. Multi-agent based ar- chitecture for virtual reality intelligent simulation sys- tem of vehicles[C]//Proceedings of the 2013 10th IEEE International Conference on Networking, Sensing and Control (ICNSC). Piscataway : IEEE Press, 2013 : 597-602.
  • 5Li D Y, Wang X D, He W, et al. Study on interaction behaviors of micro-autonomous vehieles [C]// Proceed- ings of the 2011 10th International Symposium on Autono- mous Decentralized Systems (ISADS). Los Alamitos: IEEE Computer Society Press,2011:399-406.
  • 6La H M, Lira R S, Du J, et al. A small-scale research platform for intelligent transportation systems[C]// Pro- ceedings of the 2011 IEEE International Conference on Ro- botics and Biomimetics ( IEEE-ROBIO 2011 ). Piscat- away:IEEE Press,2011:1373-1378.
  • 7Oliveira M, Santos V, Sappa A. Short term path planning using a multiple hypothesis evaluation ap- proach for an autonomous driving competition [ EB/ OL]. (2012-11-07)[2013-07-01]. http://ppniv 12. irceyn, ec-nantes, fr/paper/4Oliveira, pdf.
  • 8Lakhotia A, Golconda S, Maida A, etal. CajunBot: Architecture and algorithms[J]. Journal of Field Ro- botics, 2006,23(8) : 555-578.
  • 9Bai X Z, Zhou F G. A unified form of multi-scale Top-Hat transform based algorithms for image pro- cessing[J]. Optik-Internationai Journal for Light and Electron Optics, 2013,124(13): 1614-1619.
  • 10Truong Q B, Lee B R. New lane detection algorithm for autonomous vehicles using computer vision[C]// Proceedings of the 2008 IEEE International Conference on Control, Automation and Systems (ICCAS 2008). Piscataway: IEEE, 2008 : 1208-1213.

共引文献70

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部