摘要
Charge separation is generally considered as the most critical step to achieve efficient photocatalytic reactions. Although charge separation can be promoted by a semiconductor heterojunction, its efficacy is inherently restrained by the mismatched atomic arrangements across the heterojunction interfaces. Here, Ta3N5–LaTaON2 heterojunction with matched interfaces has been fabricated by one-step ammonolysis treatment of KLaTa2O7. The match interfaces are formed by nearly perfect adhesion of Ta3N5 (010) and LaTaON2 (101¯) facets whose interatomic distance is similar. Compared with conventional heterojunction, the so-formed Ta3N5–LaTaON2 heterojunction are extremely efficient in accelerating charge separation which in turn enables a high photocatalytic activity. An apparent quantum efficiency as high as 11.6% at 420 ± 20 nm has been reached by Ta_(3)N_(5)–LaTaON_(2) heterojunction, which is almost three times higher than Ta_(3)N_(5)-LaTaON_(2) mixtures. These results signify the importance of matched heterojunction interfaces for charge separation and provide a paradigm in the design of efficient heterojunction-based semiconductor photocatalysts.
基金
financially supported by the National Natural Science Foundation of China(Nos.51972233,52172225)
Science and Technology Commission of Shanghai Municipality(No.19DZ2271500)
the Fundamental Research Funds for the Central Universities.