期刊文献+

Achieving exceptional wear resistance in a crack-free high-carbon tool steel fabricated by laser powder bed fusion without pre-heating

原文传递
导出
摘要 Laser powder bed fusion(LPBF)for the fabrication of dense components used for tooling applications,is highly challenging.Residual stresses,which evolve in the additively manufactured part,are inherent to LPBF processing.An additional stress contribution in high-carbon steels arises from the austenite-to-martensite phase transformation,which may eventually lead to cracking or even delamination.As an alternative to pre-heating the base plate,which is not striven by industry,lowering the martensite content which forms in the part,is essential for the fabrication of dense parts by LPBF of high-carbon tool steels which are then adapted to LPBF.In this study,a successful strategy demonstrates the processing of the Fe85Cr4Mo1V1W8C1(wt%)high-carbon steel by LPBF into dense parts(99.8%).The hierarchical microstructure consists of austenitic and martensitic grains separated by elemental segregations in which nanoscopic carbide particles form a network.A high density of microsegregation was observed at the molten pool boundary ultimately forming a superstructure.The LPBF-fabricated steel shows a yield strength,ultimate compressive stress,and total strain of 1210 MPa,3556 MPa,and 27.4%,respectively.The mechanical and wear performance is rated against the industrially employed and highly wear-resistant 1.2379 tool steel taken as the reference.Despite its lower macro-hardness,the LPBF steel(58.6 HRC,0.0061 mm^(3) Nm^(-1))shows a higher wear resistance than the reference steel(62.6 HRC,0.0078 mm^(3) Nm^(-1)).This behavior results from the wear-induced formation of martensite in a microscale thick layer directly at the worn surface,as it was proven via high-energy X-ray diffraction mapping.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第25期1-19,共19页 材料科学技术(英文版)
基金 Financial support from the German Research Foundation(No.DFG KO 5771/1-1),the Leibniz Association(No.AM4steel T128/2022)is acknowledged,DESY(Hamburg,Germany),a member of the Helmholtz Association HGF,is thanked for the provision of experimental facilities.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部